

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF PURE AND APPLIED SCINCES

DEPARTMENT OF MATHS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

ANALYTICAL CHEMISTRY [YEAR1 SEM2]

AMA 2103 CALCULUS FOR SCIENCE

END OF SEMESTER EXAMINATION may series

MAY 2016

TIME: 2HRS

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 5 questions. Answer Question One and Any Other Two Questions Do not write on the question paper.

QUESTION ONE (30MKS)

- a. Find f' from first principles at x = 2 given $y = 3x^2 + 2x$ [5mks]
- b. Evaluate $\lim_{x \to -3} \frac{x^2 9}{x + 3}$ [4mks]

c. Determine the maximum value of y if $y = -0.5x^2 + 10x + 10$ [5mks]

- d. Find the gradient to the curve $Y = \frac{2x-4}{x+2}$ at x=0 use quotient rule [5mks]
- e. Find the equation of a normal to the curve $y = 2x^3 2x + 4$ at x=1 [5mks]

f. find $g_0 f$ given g(x) = 2x - 2 and $f(x) = 3x^2 + 2x + 2$ hence find $g_0 f(1)$ [6mks]

QUESTION TWO [20MKS]

a. Evaluate $\frac{dy}{dx}$ at x=2 given $y = \frac{3x+4}{x+2}$ using quotient rule [5mks]

b. Evaluate
$$\int_{1}^{3} [2x+4] dx$$
 [4mks]

- c. Investigate the nature of turning points to the curve $y = x^3 12x + 6$ [6mks]
- d. Determine the area under the curve y = 2x + 2 between x=0 and x=3 by integration [5mks]

QUESTION THREE [20MKS]

- a) Find the $\int_{2}^{4} [2x + 3x^2 + 3] dx$ [5mks]
- e. A straight line passes through A(3 3) B(9 6) and C (x, 12) find the value of x [5mks]
- f. Determine inverse (f¹(x)) given that $f(x) = \frac{x}{x-3}$ [5mks]

g. determine the turning points of the curve $y = -2x^3 + 24x + 4$ [5mks]

QUESTION FOUR (20MKS)

- a. Given $h(x) = x^2 + 2x + 2$ and g(x) = 2x + 3 find i] g0f (x) and hence evaluate gof(2) [5mks]
- b. Find the equation of a curve given that the gradient function of the curve, $\frac{dy}{dx} = 2x + 2$ and the curve passes through (2.6) [5mks]
- c. Use Simpson rule to evaluate $\int_{1}^{4} [x^{2} + 2] dx$ [6mks]
- d. Given f(x)=2x + 4 and g(x)=3x + 2 find g0f(1) [4mks]

QUESTION FIVE [20MKS]

a) Find $\frac{dy}{dx}$ at x=1 given I] y= (2x+4)³ using substitution [5mks]

II]
$$y = \frac{3x+2}{x+1}$$
 using quotient rule [5mks]

b) Evaluate I] $\int_{1}^{2} [x - 2] dx$ [5mks]

II]
$$\int_{2}^{3} [x^{2} + 2x] dx$$
 [5mks]