TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN ANALYTICAL CHEMISTRY

APS 2101: PHYSICS I

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME:2HOURS

Instructions to Candidates

You should have the following for this examination
Answer Booklet
examination pass
mathematical table or calculator
student ID
This paper consists of FIVE questions.
Attempt question ONE (Compulsory) and any other TWO questions.
This paper consists of 5 printed pages
Do not write on the question paper.

Question ONE (30mks)

a) When a mass is attached to a spring, the acceleration is $a=k x / m$ where a is acceleration, x is a length, m is mass, and k is a spring constant. Find the units of k.
b) The following figure fshows the velocity-time graph for the journey of a car in 100 minutes

Time (min)
i) Determine the acceleration of the car between A and B and between C and D .
ii) Determine the distance covered by the car during the journey.
iii) Determine the average speed of the car.
c) A student pulls a block of wood of mass 4 kg along a horizontal surface by applying a constant force of 15 N . Calculate the co- efficient of friction on the surface.
d) A car traveling at $72 \mathrm{~km} / \mathrm{h}$ undergoes a uniform acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$. Find the time taken for its velocity to decrease to one quarter of the initial value.
e) A body in a uniform circular motion experiences acceleration despite moving at a constant speed. Explain.
f) i)Explain any two differences between electromagnetic waves and mechanical waves (2 mks)
ii) All waves can exhibit phenomena such as refraction and diffraction. Explain
g) The diagram represents a wave on the ocean.

(a) Use the information given in the diagram to find:
(ii) the amplitude of the wave.
(b) The frequency of the wave is 0.14 Hz .
h) Explain why using a fan in summer feels so refreshing
i) A concrete railroad tie has a length 2.45 meters on a hot, sunny, $35^{\circ} \mathrm{C}$ day. What is the length of the railroad tie in the winter when the temperature dips to $-25^{\circ} \mathrm{C}$? Coefficient of linear expansion of concrete $\left.\alpha=12 \times 10^{-5}\left({ }^{0} \mathrm{C}\right)^{-1}\right)$
j) Explain the two differences between temperature and heat
k) Explain the uses of radio waves and x-rays

Question TWO(15mks)

(a) The figure below shows a stone of mass 450 g rotated in a vertical circle at 3 revolutions per second. If the string has a length of 1.5 m , determine:

(i) The linear velocity
(ii) The tension of the string at position \mathbf{A}
b) A stone is whirled with uniform speed in horizontal circle having radius of 10 cm . It takes the stone 10 seconds to describe an arc length 4 cm .Determine
(i) Angular velocity
(ii) The periodic time
(iii) State two factors affecting centripetal force

Question THREE (15mks)

a) State Pascal's principle
b) What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000 kg car resting on a slave cylinder? the master cylinder has a 2 cm diameter and the slave has a 24 cm diameter
c) The left side of the heart creates a pressure of 120 mmHg by exerting a force directly on the blood over an effective area of $15.0 \mathrm{~cm}^{2}$. What force does it exert to accomplish this. (density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$)
d) Explain why in early days of commercial flights women were not allowed to wear high heeled shoes?
e) The reading on a mercury barometer at Mombasa is 760 mm . Calculate the pressure at Mombasa (density of mercury is $1.36 \times 10^{4} \mathrm{Kgm}^{-3}$)
f) The figure below shows a measuring cylinder of height 30 cm filled to a height of 20 cm with water and the rest occupied by kerosene

Given that density of water $=1000 \mathrm{Kgm}^{-3}$, density of kerosene $=800 \mathrm{Kgm}^{-3}$ and atmospheric pressure $=1.03 \times 10^{5}$ Pascals, determine the pressure acting on the base of the container (3mks)

Question FOUR (15mks)

a) A travelling wave is described by the equation

$$
y(x, t)=(0.003) \cos (20 x+200 t)
$$

where y and x are measured in metres and t in seconds
Calculate the following physical quantities:
i) angular wave number
ii) wavelength
iii) angular frequency
iv) frequency
v) period
vi) wave speed
vii) amplitude
viii) particle velocity when $x=0.3 \mathrm{~m}$ and $t=0.02 \mathrm{~s}$
ix) particle acceleration when $x=0.3 \mathrm{~m}$ and $t=0.02 \mathrm{~s}$
b) Distinguish between transverse and longitudinal waves.

Question FIVE (15mks)

a) A wooden crate with mass 100 kg is at rest on a stone floor. Given that the coefficients of kinetic and static friction are 0.4 and 0.5 respectively. Calculate
i) The minimum horizontal force F needed to just get the crate moving
ii) The minimum force needed to keep the crate in motion at a constant velocity
iii) The acceleration of the crate if a force of 550 N is applied
b) A skier of mass 60 kg skies from rest down a slope inclined at an angle of 15^{0}. The length of the incline is 75 m . He reaches the end of the incline at a velocity of $15 \mathrm{~m} / \mathrm{s}$. A constant frictional force acts on the skier on his way down

i) Write down the expression for the magnitude of the normal force acting on the skier and then calculate its magnitude
ii) Draw a well labeled free body diagram showing all the forces acting on the a skier as he skies down the slope
iii) Calculate the average frictional force acting on the skier during his motion down the incline

THE LAST PRINTED PAGE

