

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF PURE AND APPLIED SCINCES

DEPARTMENT OF MATHS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

UPGRADING MATHS

AMA 1003 CALCULUS

END OF SEMESTER EXAMINATION

MAY SERIES

TIME: 2HRS MAY 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of 5 questions. Answer Question One And Any Other Two Questions

Do not write on the question paper.

QUESTION ONE (30MKS) B

a. Determine the equation of a straight line passing through point A(2, 2) and B(1, 6) [3mks]

I. Evaluate
$$\lim_{x\to -3} \frac{x^2-9}{x+3}$$
 [4mks]

II. Determine the maximum value of y if $y = -0.01x^2 + 20x + 100$ [5mks]

b. Find the gradient to the curve
$$y = \frac{2x-4}{x+2}$$
 at $x=0$ [4mks]

c. Find the equation of a normal to the curve $y = 2x^3 - 4x + 4$ at x=1 [6mks]

d. find $g_0 f$ given g(x) = 2x - 2 and $f(x) = 3x^2 + 2x + 2$ hence find $g_0 f(1)$ [4mks]

e. evaluate
$$\int_0^1 [6x^2 + 2] dx$$
 [4mks]

QUESTION TWO [20MKS]

a. Find
$$f'(x)$$
 from first principles at $x = 2$ given $f(x) = 3x^2 + 2x$ [6mks]

b. Evaluate
$$\frac{dy}{dx}$$
 at x=2 given $y = \frac{3x+4}{x+2}$ using quotient rule [4mks]

c. Evaluate
$$\int_1^3 [2x+4] dx$$
 [4mks]

d. Investigate the nature of turning points to the curve $y = x^3 - 12x + 6$ [6mks]

QUESTION THREE [20MKS]

a) Evaluate
$$\int_{2}^{4} [2x + 3x^{2} + 3]dx$$
 [5mks]

b. A straight line passes through A(3 2) B(4 6) and C (1, y) find the value of y [5mks]

c. Determine inverse (f⁻¹(x)) of the function
$$f(x) = \frac{x}{2x+4}$$
 [5mks]

d. determine the turning points of the curve $y = -2x^3 + 24x + 4$ [5mks]

QUESTION FOUR (20MKS)

a. Given $h(x) = x^2 + 2x + 2$ and g(x) = 2x + 3 find i] goh(x) and hence evaluate goh(2) [5mks]

b. Find the equation of a curve given that the gradient function of the curve, $\frac{dy}{dx} = 2x + 2$ and the curve passes through (2.6) [5mks]

c. Use Simpson rule to evaluate
$$\int_{1}^{3} [x^{2} + 2] dx$$
 n=4 [6mks]

Determine the error in c) [4mks]

QUESTION FIVE [20MKS]

a) Find
$$\frac{dy}{dx}$$
 at x=1 given

I]
$$y=(2x+4)^3$$
 using substitution

[5mks]

II]
$$y = \frac{3x^2 + 2}{x + 1}$$
 Using quotient rule [5mks]

b) Evaluate I]
$$\int_0^2 [x-2] dx$$

[5mks]

$$II] \int_0^2 4x^{-2} dx$$
 [5mks]