FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE \& APPLIED SCIENCES UNIVERSITY EXAMINATION FOR:
 DPT 15S

ACH 2207: PHYSICAL CHEMISTRY
END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

(a) List four factors that affect the position of equilibrium in a reversible reaction (4 marks)
(b) An endothermic reaction between compounds A and B forming product C and D is accompanied by enthalpy change of 242 KJ . Give an energy level diagram of this reaction
(c) (i) Give the equation which represents Boyle's Law and Charles's Law combined (1 Mark)
(ii) Sample of gas occupies $140 \mathrm{~cm}^{3}$ at $28^{\circ} \mathrm{c}$ and 750 mmHg . The gas is heated to $35^{\circ} \mathrm{c}$ and its pressure increased to 756 mmHg . Find its final volume
(d) State four units of expressing pressure of gases
(e) Find the numerical value of $\mathrm{pK}_{\mathrm{w}}, \mathrm{pOH}$ and PH in each of the following
(i) $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) Distilled water
(ii) 0.04 M NaoH

$$
\mathrm{Kw}=1 \times 10^{-14}
$$

Question TWO

$300 \mathrm{~cm}^{3}$ of 2 M (Molarity) HCl solution was added into a beaker containing 33.6 g of magnesium carbonate powder.
(a) Determine which reactant was in excess
(6marks)
(b) Calculate the mass (or volume) of the insufficient reactant that need to be added to complete the reaction (4 marks)
(c) Calculate the volume of carbon dioxide produced if 33.6 g of MgCO_{3} completely reacted with HCl at $45^{\circ} \mathrm{C}$ and 758 MMHg pressure given $\mathrm{Mg}=24, \mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=1, \mathrm{Cl}=35.5$, Standard pressure -760 mmHg , Standard temperature $=273 \mathrm{k}$ and Molar volume of a gas at $\mathrm{STP}=22.4$ lit.
(5Marks)

Question THREE

(a) Define the term homogeneous equilibrium
(b) In an esterification experiment 9.6 g methanol $\mathrm{CH}_{3} \mathrm{OH}$ was heated with 37 g of propanoic acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$. 18.5 g of the acid remained at equilibrium
(i) Calculate the equilibrium constant
 $\mathrm{C}=12 \mathrm{O}=16 \mathrm{H}=1$
(13Marks)
(ii) State one change that can be mode on this equilibrium system to increase the yield of the ester product

Question FOUR

(a) (i) State Dalton's Law of Partial Pressures
(ii) A volume of 250 ml of gas P measured at 0.30 atm and 300 ml of gas Q at a pressure of 0.40 atm are passed into a container whose volume is 750 ml . Determine the total pressure of the mixture in the new vessel at the same temperature
(b) (i) State Gay Lussac's Law
(ii) A mixture of $200 \mathrm{~cm}^{3}$ of ethane and $880 \mathrm{~cm}^{3}$ of oxygen was exploded. The reaction taking place is represented by the equation.

$$
2 \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+7 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2(\mathrm{~g})}
$$

Determine the volume composition of the final gaseous mixture

Question FIVE

(a) Define
(i) Arrhenius base
(1Mark)
(ii) Bronsted acid
(iii) Conjugate acid of a base
(b) Given the equation

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \quad \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}^{-}
$$

Identify
(i) Bronsted acid
(1 Mark)
(ii) Conjugate acid of the base
(iii) Conjugate pair
(c) Distinguish ionization energy from atomization energy and give their corresponding equations using sodium metal
(d) Given the following Ksp data

BaCO_{3}	Ksp	$=5.0 \times 10^{-9}$
CaCO_{3}	Ksp	$=4.5 \times 10^{-9}$
MgCO_{3}	Ksp	$=1.66 \times 10^{-6}$

(i) Identify the most soluble carbonate

1 Mark
(ii) Write dissolving equation for BaCO_{3} 2 Marks
(iii) Calculate the concentration of $\mathrm{CO}_{3}{ }^{2-}$ ion in a saturated solution of $\mathrm{CaCO}_{3} \quad 6$ Marks

