TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF APPLIED AND HEALTH SCIENCES
DEPARTMENT OF PURE AND APPLIED SCIENCES
UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (INDUSTRIAL OPTION)

BTAC 12S SEPT 2012

ACH 4409 REACTOR DESIGN

END OF SEMESTER EXAMINATION

SERIES:
TIME: 2 HOURS
DATE:

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt Question one compulsory and any other two question
Do not write on the question paper.

Paper Two

QUESTION ONE

A. If a reaction's rate constant at 298 K is $33 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $45 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at 675 K , calculate the activation energy Outline significant of Arrhenius equation

5 marks
B. What is the Gibbs free energy change at the transition state when $\Delta \mathrm{H}$ at the transition state is $34 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}$ at transition state is $66 \mathrm{~J} / \mathrm{mol}$ at 334 K
C. derive performance equation for a mixed flowStirred tank reactor $\mathbf{8}$ marks
D. $1 \mathrm{~L} /$ minutes of liquid contain A and $\mathrm{B}\left(\mathrm{C}_{\mathrm{AO}}=0.1 \mathrm{~mol} / \mathrm{L}, \mathrm{C}_{\mathrm{BO}}=0.01 \mathrm{~mol} / \mathrm{L}\right)$ flow into mixed reactor of volume $\mathrm{V}=1 \mathrm{~L}$. Outlet stream from reactor contains A, B, and $\mathrm{C}\left(\mathrm{C}_{\mathrm{AF}}=\right.$
$0.02 \mathrm{~mol} / \mathrm{L}), \mathrm{C}_{\mathrm{BF}}=0.03 \mathrm{~mol} / \mathrm{L}$ and $\mathrm{C}_{\mathrm{CF}}=0.04$) find the rate of reaction of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ for conditions within reactor.

6 marks
E. Explain operational difference between Trickling bed reactors and fixed bed reactor 6 marks

QUESTION TWO

A. Outline Some important aspects of the Plug flow Reactor

6 marks
B. Describe factors to be consider while designing chemical reactor

6 Marks
C. distinguish between space-time and space velocity

4 marks
D. Derive differential rate equation for plug flow reactor

4 marks

QUESTION THREE

A. The rate of disappearance of Nitrogen is 1.5×10^{-4} moles $\sec ^{-1} \mathrm{~L}^{-1}$. Calculate rate of formation of ammonia Reaction $0.5 \mathrm{~N}_{2}(\mathrm{~g})+1.5 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad 4$ mark
B. explain operational difference between Batch reactor and continuous reactor 5 marks
C. with the aid of a diagrams explain the operation of semi batch reactor 5 marks
D. Show that the half-life ($\mathrm{t} 1 / 2$) of a reaction with respect to reactant A is given by the expression: where $\mathrm{n}=$ order of reaction, $\mathrm{K}=$ specific rate constant $\mathrm{CAO}=$ initial concentrationof A 6 marks
$\operatorname{In} t_{1 / 2}=(1-n) \operatorname{In} C_{A o}+\operatorname{In}\left[\frac{2^{n-1}-1}{K(n-1)}\right]$

QUESTION FOUR

A. Use Algorithm methode to write the net rate law of specis A and C in the following multiple reaction taking place in plug flow Reactor.

$$
\begin{array}{ll}
\text { I } & \mathrm{A}+\mathrm{B} \rightarrow \\
\text { II } & 2 \mathrm{~A}+3 \mathrm{C} \\
2 \mathrm{D}
\end{array}
$$

5 Marks

A. The rate constants of a reaction at 500 K . and 700 K are $0.02 \mathrm{~s}^{-1}$ and $0.07 \mathrm{~s}^{-1}$ respeetively calculate the activation energy.

4 marks
A. Pure gaseous $\mathrm{A}\left(\mathrm{C}_{\mathrm{AO}}=100 \mathrm{millimol} / \mathrm{Litre}\right)$ is fed at steady rate into a mixed reactor $(\mathrm{V}=0.1$ litre) where it dimerises by reaction 2 A - R.for different feed rates the following data were obtain .determine fractional conversion and rate of reaction for each run and hence rate equation for this reaction $\mathbf{1 1}$ marks

Run no	1	2	3	4
$\mathrm{~V}_{\text {o L/hr }}$	30	9.0	3.6	1.5
$\mathrm{C}_{\mathrm{A}, \text { out Millimol/L }}$	85.7	66.7	50	33.3

QUESTION FIVE

A. Define the following term as used in chemical reaction kinetics
i. Rate law
ii. Residence Time Distribution

4 Marks
B. Define product selectivity and explain how to increase yield

3 marks
C. Data for Reaction A -R operated in a batch reactor is given below. How long must we react each batch for concentration to drop from $\mathrm{C}_{\mathrm{AO}}=1.3$ to $\mathrm{C}_{\mathrm{AF}}=0.3 \mathrm{~mol} /$ Litre

$\mathbf{C r A}_{\mathbf{A}}$ Mol/L	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3
$\mathbf{r}_{\text {A Mol/L.min }}$	0.1	0.3	0.5	0.6	0.5	0.75	0.1	0.6	0.05	0.045

