

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR

BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY

ACH 4204 : STEREOCHEMISTRY AND CONFORMATIONAL

ANALYSIS

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: 17TH MAY 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of FIVE questions. Attempt Question ONE and any other TWO. **Do not write on the question paper.**

Question ONE

- a) Explain the following terms
 - i) Trans isomer
 - ii) Chiral centre
 - iii) Fischer projection
 - iv) Dextrorotatory isomer

(8marks)

b) Indicate with reason whether the following pairs of compounds are identical, diastereomers, enantiomers or constitutional isomers.

(8marks)

c) Redraw and assign R or S configuration to all the stereocentres in each of the following compounds.

(5marks)

- d) Draw the most stable chair conformations of the following compounds and state whether they are optically active or optically inactive.
 - i) Trans -1-ethyl-2-propylcyclohexane
 - ii) Trans- 1,4- dibromocyclohexane
 - iii) Cis-2-methylcyclohexanol

(6marks)

e) The conformational free energy of a fluoro group is -1.0 KJmol^{-1} at 25° C. Calculate the conformational equilibrium constant of fluorocyclohexane.

(3marks)

Question TWO

- a) Differentiate between the following terms
 - i) Pro-R and Pro-S
 - ii) Re-face and Si-face

(4marks)

- b) 28mg of a sample of Mandelic acid was dissolved in 1 cm³ of ethanol and the solution placed in a 10cm polarimeter cell. An optical rotation of $+4.34^{\circ}$ was measured at 20^oC with light of wavelength 589nm.
 - i) Calculate the specific rotation of the sample. (4marks)
 - ii) If the specific rotation of pure (R) Mandelic acid is +158 work out the % optical purity . (3marks)
 - iii) Calculate the % of (R)- and (S)- Mandelic acid in the sample.

(3marks)

c) Using Newmann projections draw the preferred conformation(s) of the following compounds and give reason(s) for your choice.

i)	ClCH ₂ CH ₂ Cl	(2marks)
ii)	HOCH ₂ CH ₂ OH	(2marks)
iii)	$CH_3CH_2CH_2CH_3$	(2marks)

Question THREE

- Explain the term allenes. a) i) (2marks) ii) State and explain the conditions for allenes to be chiral or achiral. (4marks) b) Draw the cis and trans forms of 4-t-butylcyclohexanol dash structures. (4marks) Indicate with reason whether the hydrogen atoms Ha and Hb in each of the c) following compounds are homotopic, enantiotopic or diastereotopic. $HOH_2C \xrightarrow[H_b]{H_a} CH_2OH H \xrightarrow[H_b]{H_b} CH_3 H_b H_b H_a$ i) H₃C iv) (8marks)
- d) Explain the term threo enantiomer

(2marks)

Question FOUR

- a) Explain the following terms
 - i) Biphenyls
 - ii) Spiranes
 - iii) Helical molecules
- (6marks) b) Indicate whether the following molecules are chiral or achiral and explain your answer.

(7marks)

c) At 32^{0} C the dipole moment of gaseous 1,2- dichloroethane was found to be 1.12D. Given that $\mu_{gauche} = 3.2D$ and $\mu_{anti} = 0$ calculate

i) The % of each of the anti and gauche conformers at 32° C.

(3marks)

ii) The equilibrium constant K.

(2marks)

iii) The Gibbs free energy difference (ΔG^{θ}) between the two conformations given that $\Delta G^{\theta} = -RT \ln K$ and $R = 8.314 \text{Jmol}^{-1} \text{K}^{-1}$

(2marks)

Question FIVE

a) Using the compound below to answer questions that follow

- i) Determine the maximum number of stereoisomers possible for this compound. (2marks)
- ii) Draw the Fischer projections of the stereoisomers.

(6marks)

iii) Which of the isomers in (ii) above are optically inactive. Explain your answer. (2marks)

- b) i) Explain the term sigmatropic reaction.
 - ii) Differentiate between [2,3] and [3,3] signatropic rearrangements giving an example of reactions in each case.

(6marks)

c) Explain how enzymes act as resolving agents in resolution of enantiomeric mixture of 5- norbornen-2-ol.

(2mks)