

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN ANALYTICAL CHEMISTRY

DAC 14S

ACH 2210: Chemical Thermodynamics and Phase Equilibrium

END OF SEMESTER EXAMINATION

SERIES: APRIL2016

TIME:2HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

 $R = 8.314 \text{J/mol/K}, 1 \text{ atm} = 101 325 \text{ Nm}^{-2}$

Question ONE

a)	Differentiate between isothermal and adiabatic process	(4 mark)
b)	When one mole of a liquid benzene is completely burnt in oxygen to form liquid water and	
	carbon dioxide gas, $\Delta H = -3264.58$ Kj at 298K calculate the enthalpy of reaction at constant	
	volume at the same temperature	(6marks)
c)	Determine the change in entropy for the following reactions	
	i) $C_2H_2 (g) + H_2 (g) \longrightarrow C_2H_4 (g)$	(3marks)
	ii) 2C (s) $+ 3H_{2 (g)} \longrightarrow C_2H_{6 (g)}$	(3marks)
	given entropies of $C_2H_2 = 200.82$, $C_2H_4 = 219.45$, $C_2H_6 = 229.49$, $C = 5.69$, $H = 130.59$ in J	$mol^{-1}K^{-1}$
d)	A sample of titanium is heated with an electric coil. If 102 joules of energy are added to a 12.4 g	
	sample and the final temperature is 37.2°C, calculate the initial temperature of the titanium.	
	Heat capacity of titanium is 0.523 J/g ⁰ C	(4 marks)
e)	Sketch a well labeled schematic flow diagram of heat engine	(4marks)

 f) State briefly the thermodynamic meaning of the following terms: system, surrounding and universe (6 marks)

Question TWO

a) Outline with the help of a diagram the compression of a gas and prove the work done				
by compression is positive	(6 marks)			
b) Differentiate between molar heat capacity and specific heat of a substance				
c) sketch the density-temperature diagram ear 0oc showing clearly the anomalous behavior of water				
and explain the behavior	(5marks)			

Question THREE

a)	Then one mole of a water at STP and 1 atm is converted to steam at 100°C the amount		
	of heat absorbed is 40670J calculate change in energy	(6marks)	
b)	The volume of a sample of an ideal monatomic gas at 0°C is 44.83L to what volume		
	must the gas be compressed adiabatically so as to attain a temperature of 30°C	(4marks)	
c)	The boiling point of water at pressure of 50 atm is 265°C and at 1 atm its 100°C assured to the second seco	g point of water at pressure of 50 atm is 265°C and at 1 atm its 100°C assuming	
	the temperature of the sink is 40°C compare the theoretical efficiencies of a steam en	gine	
	operating between the boiling point of water and that of the sink at		
	a) 1 atm (2	5 marks)	
	b) 50 atm (2	.5 marks)	

Question FOUR

- a) The molar enthalpies of combustion of ethene, hydrogen and ethane are -1411.59J,
 -285.56J and -1558.85J respectively at 298K determine the enthalpy o formation of ethane (7marks)
- b) One mole of an ideal monatomic gas at STP is heated at constant volume to a temperature of 323K determine the change in entropy for the process (4marks)
- c) Name any FOUR conditions required for compression of a gas in a cylinder (4 marks)

Question FIVE

Explain how water's phase diagram differs from that of carbon dioxide gas (15marks)