TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE \& APPLIED SCIENCES UNIVERSITY EXAMINATION FOR: DIPLOMA IN ANALYTICAL CHEMISTRY

DAC 14S

ACH 2210: Chemical Thermodynamics and Phase Equilibrium

END OF SEMESTER EXAMINATION

SERIES:APRIL2016

TIME:2HOURS

DATE:Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K}, 1 \mathrm{~atm}=101325 \mathrm{Nm}^{-2}$

Question ONE

a) Differentiate between isothermal and adiabatic process
b) When one mole of a liquid benzene is completely burnt in oxygen to form liquid water and carbon dioxide gas, $\Delta \mathrm{H}=-3264.58 \mathrm{Kj}$ at 298 K calculate the enthalpy of reaction at constant volume at the same temperature
c) Determine the change in entropy for the following reactions
i) $\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}$
ii) $2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}$
(3marks)
given entropies of $\mathrm{C}_{2} \mathrm{H}_{2}=200.82, \mathrm{C}_{2} \mathrm{H}_{4}=219.45, \mathrm{C}_{2} \mathrm{H}_{6}=229.49, \mathrm{C}=5.69, \mathrm{H}=130.59 \mathrm{in}^{\mathrm{Jmol}}{ }^{-1} \mathrm{~K}^{-1}$
d) A sample of titanium is heated with an electric coil. If 102 joules of energy are added to a 12.4 g sample and the final temperature is $37.2^{\circ} \mathrm{C}$, calculate the initial temperature of the titanium.
Heat capacity of titanium is $0.523 \mathrm{~J} / \mathrm{g}^{0} \mathrm{C}$
e) Sketch a well labeled schematic flow diagram of heat engine
f) State briefly the thermodynamic meaning of the following terms: system, surrounding and universe

Question TWO

a) Outline with the help of a diagram the compression of a gas and prove the work done by compression is positive
b) Differentiate between molar heat capacity and specific heat of a substance
c) sketch the density-temperature diagram ear 0oc showing clearly the anomalous behavior of water and explain the behavior

Question THREE

a) When one mole of a water at STP and 1 atm is converted to steam at $100^{\circ} \mathrm{C}$ the amount of heat absorbed is 40670J calculate change in energy
b) The volume of a sample of an ideal monatomic gas at $0^{\circ} \mathrm{C}$ is 44.83 L to what volume must the gas be compressed adiabatically so as to attain a temperature of $30^{\circ} \mathrm{C}$
c) The boiling point of water at pressure of 50 atm is $265^{\circ} \mathrm{C}$ and at 1 atm its $100^{\circ} \mathrm{C}$ assuming the temperature of the sink is $40^{\circ} \mathrm{C}$ compare the theoretical efficiencies of a steam engine operating between the boiling point of water and that of the sink at
a) 1 atm
(2.5 marks)
b) 50 atm
(2.5 marks)

Question FOUR

a) The molar enthalpies of combustion of ethene, hydrogen and ethane are -1411.59 J , -285.56 J and -1558.85 J respectively at 298 K determine the enthalpy o formation of ethane ($7 \mathrm{marks} \mathrm{)}$
b) One mole of an ideal monatomic gas at STP is heated at constant volume to a temperature of 323 K determine the change in entropy for the process
c) Name any FOUR conditions required for compression of a gas in a cylinder

Question FIVE

Explain how water's phase diagram differs from that of carbon dioxide gas (15marks)

