TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE \& APPLIED SCIENCES UNIVERSITY EXAMINATION FOR: DIPLOMA IN ANALYTICAL CHEMISTRY

DAC 14S

ACH 2210: Chemical Thermodynamics and Phase Equilibrium
END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS

DATE:Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K}, 1 \mathrm{~atm}=101325 \mathrm{Nm}^{-2}$

Question ONE

a) When one mole of a liquid benzene is completely burnt in oxygen to form liquid water and carbon dioxide gas, $\Delta \mathrm{H}=-3264.58 \mathrm{Kj}$ at 298 K calculate the enthalpy of reaction at constant volume at the same temperature
b) Define the first law of thermodynamics and right the differential form of the law (3 marks)
c) Differentiate between molar heat capacity and specific heat of a substance (4 marks)
d) $3 \mathrm{dm}^{3}$ of hydrogen initially at STP are expanded isothermally and reversibly to a volume of $4 \mathrm{dm}^{3}$ calculate the work done
e) 0.1 mole of an ideal gas expanded isothermally at 273 K from 3 dm 3 to 5 dm 3 determine the energy absorbed from the surrounding
f) Give the meaning of the following thermodynamic concepts
i) System
ii) Surrounding
iii) Extensive property
iv) Intensive property
g) The molar heat of fusion and vaporization of benzene are $10.9 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $31 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively calculate the enthalpy change for the solid to liquid and liquid to vapour transition of benzene at 1 atm benzene melt at $5.5^{\circ} \mathrm{C}$ and boils at $80.1^{\circ} \mathrm{C}$

Question TWO

a) When one mole of a water at STP and 1 atm is converted to steam at $100^{\circ} \mathrm{C}$ the amount of heat absorbed is 40670 J calculate change in energy
(6marks)
b) The volume of a sample of an ideal monatomic gas at $0^{\circ} \mathrm{C}$ is 44.83 L to what volume must the gas be compressed adiabatically so as to attain a temperature of $30^{\circ} \mathrm{C}$
c) The boiling point of water at pressure of 50 atm is $265^{\circ} \mathrm{C}$ and at 1 atm its $100^{\circ} \mathrm{C}$ assuming the temperature of the sink is $40^{\circ} \mathrm{C}$ compare the theoretical efficiencies of a steam engine operating between the boiling point of water and that of the sink at
a) 1 atm
(2.5 marks)
b) 50 atm

Question THREE

a) Classify the following systems as open, closed or isolated
i) Nitrogen and hydrogen reacting to form ammonia in a sealed tube
(1mark)
ii) Potassium chlorate and manganese dioxide are heated in unsealed test tube to form potassium chloride and oxygen
(1mark)
b) Consider isochloric (change in $\mathrm{V}=0$) in which the pressure of a 2.35 mole sample of ideal gas changes from 1.60 atm at 197 K to 2.70 atm . The final temperature during the change is 332 K and C_{V} for the gas is $3 / 2$ R. Calculate q, w, change in E , and change in H for the process
(7 marks)
c) Outline with the help of a diagram the compression of a gas and prove the work done by compression is positive

Question FOUR

a) Two moles of an ideal gas at STP are heated at constant volume to a temperature of 350 K determine the increase in entropy for the system $\mathrm{Cv}=12.47 \mathrm{~J}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
b) sketch the density-temperature diagram ear 0oc showing clearly the anomalous behavior of water and explain the behavior
c i) state the second law of thermodynamic
ii) explain why heat engine with 100% efficiency would violate the second law of thermodynamic (3mrks)

Question FIVE

Explain how water's phase diagram differs from that of carbon dioxide gas

