# THE TECHNICAL UNIVERSITY OF MOMBASA

# FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

#### DEE2

## **EME 2130 MECHNANICAL SCIENCE**

**SERIES:** APRIL/MAY 2016

TIME: 2 HOURS

## **Instructions to candidates**

You should have the following for this examination:-

- Answer booklet
- Scientific calculator
- Drawings instruments

The paper consists of FIVE Questions. Answer any THREE questions

# **Question One**

| (a)   | Define the following terms:- |                                                                                                                                                                                                                                                                         |           |  |  |  |  |
|-------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
|       | (i)                          | Work                                                                                                                                                                                                                                                                    |           |  |  |  |  |
|       | (ii)                         | Energy                                                                                                                                                                                                                                                                  |           |  |  |  |  |
|       | (iii)                        | Power                                                                                                                                                                                                                                                                   |           |  |  |  |  |
|       | (iv)                         | Kinetic energy                                                                                                                                                                                                                                                          |           |  |  |  |  |
|       |                              |                                                                                                                                                                                                                                                                         | (4 marks) |  |  |  |  |
| (b)   | State                        | the principle of conservation of energy                                                                                                                                                                                                                                 |           |  |  |  |  |
|       |                              |                                                                                                                                                                                                                                                                         | (2 marks) |  |  |  |  |
| (c)   | frictio                      | A body having a mass of 80N rests on a horizontal surface. Assuming the coefficient of friction is 0.25, calculate the force applied to the body at an upward angle of 30° with the horizontal, to just:-                                                               |           |  |  |  |  |
|       | (i)                          | Pull the body over the surface                                                                                                                                                                                                                                          |           |  |  |  |  |
|       | (ii)                         | Push the body over the surface,                                                                                                                                                                                                                                         |           |  |  |  |  |
|       | with c                       | constant velocity in each case                                                                                                                                                                                                                                          |           |  |  |  |  |
|       |                              | (1                                                                                                                                                                                                                                                                      | 14 marks) |  |  |  |  |
|       |                              |                                                                                                                                                                                                                                                                         |           |  |  |  |  |
| Quest | ion Tw                       | vo                                                                                                                                                                                                                                                                      |           |  |  |  |  |
| (a)   | Define the following terms:- |                                                                                                                                                                                                                                                                         |           |  |  |  |  |
|       | (i)                          | Moment                                                                                                                                                                                                                                                                  |           |  |  |  |  |
|       | (ii)                         | Couple                                                                                                                                                                                                                                                                  |           |  |  |  |  |
|       | (iii)                        | Torque                                                                                                                                                                                                                                                                  |           |  |  |  |  |
|       |                              |                                                                                                                                                                                                                                                                         | (3 marks) |  |  |  |  |
| (b)   | comm<br>a 40K                | compound lever shown below is made up of two levers AE and CE, pinned and point E. AE carries a 30KN load at B and rests on a knife edge at A. CE CN load at C and rests at a knife edge at D. Calculate the vertical force required to hold the two levers horizontal. | E carries |  |  |  |  |

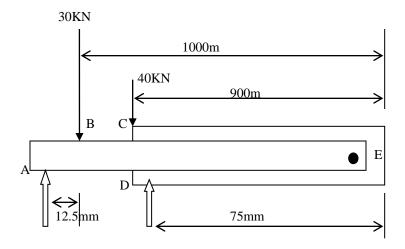



Figure 1

(8 marks)

(c) Calculate the magnitude and direction of the reaction at the pivot point A of the lever shown in the diagram. The lever is in equilibrium.

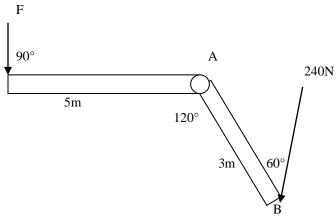



Figure 2

(9 marks)

# **Question Three**

- (a) Define the following terms:-
  - (i) Stress
  - (ii) Strain
  - (iii) Modulus of elasticity

(3 marks)

(b) The following results were obtained for a gauge length of 60mm in a tensile test on a specimen of black mild steel of 12mm diameter.

| Load, W (KN)                   | 5  | 10   | 15 | 20 | 25   | 30   | 35 | 40  |
|--------------------------------|----|------|----|----|------|------|----|-----|
| Extension x10 <sup>-3</sup> mm | 14 | 27.2 | 41 | 54 | 67.6 | 81.2 | 96 | 112 |

When tested to destruction:-

Maximum load = 65KN

Load at fracture = 50KN

Diameter at fracture = 7.5mm

Total extension gauge length = 17mm

### Calculate:-

- (i) Young's Modulus
- (ii) Specific modulus
- (iii) Ultimate tensile stress
- (iv) Breaking stress
- (v) Stress at fracture
- (vi) Percentage elongation

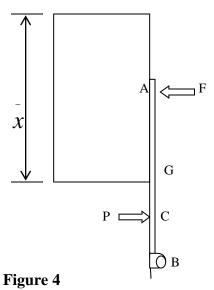
Hint: Relative density of steel = 7.8

(13 marks)

- (c) Discuss your results in 3(b) above in relation to:-
  - (i) Failure, a factor of safety
  - (ii) Ductility
  - (iii) Resilience and toughness
  - (iv) Brittle materials

(4 marks)

## **Question Four**


- (a) Define the following terms:-
  - (i) Pressure
  - (ii) Density
  - (iii) Specific gravity

- (iv) Specific weight
- (v) Centre of pressure

(5 marks)

- (b) A fuel tank contains oil of specific gravity 0.7. In one vertical side is cut a circular opening 1.8m diameter closed by a trap door hinged at the lower end B and held by a bolt at the upper edge A. If the fuel level is 1.8m above the top edge of the opening, calculate:-
  - (i) The total force on the door,
  - (ii) The force F in the bolt
  - (iii) The force on the hinge.

Density of water =  $1 \text{Mg/m}^3$ 



(15 marks)

## **Question Five**

- (a) During three consecutive seconds it is observed that a particle moves with constant acceleration through distances of 240m, 486m and 5m. Calculate:-
  - (i) The acceleration and velocity at the beginning and end of the period of the observation
  - (ii) The distance traversed during the third second of observation and the total distance covered in six seconds.

(10 marks)

- (b) A pulley A, diameter 800mm is accelerated by means of a belt drive from 60r/min to 240r/min during which it turns through 360 revolutions. This pulley is attached by means of a belt to a driven pulley B, with a diameter 200mm. Calculate:-
  - (i) The angular acceleration of the belt if there is no slip
  - (ii) The initial and final velocity of pulley B in r/min and rad/s respectively.

(10 marks)