THE TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL \& ELECTRONICS ENGINEERING

DEE2
EME 2130 MECHNANICAL SCIENCE

SERIES: APRIL/ MAY 2016
TIME: 2 HOURS

Instructions to candidates

You should have the following for this examination:-

- Answer booklet
- Scientific calculator
- Drawings instruments

The paper consists of FIVE Questions. Answer any THREE questions

Question One

(a) State two advantages and two disadvantages of friction.
(b) A body of weight 520 N is prevented from sliding down a plane inclined at 45° to the horizontal by a force of 268 N acting upwards and parallel to the plane.
(i) If the body is to be pulled up the plane by a force acting at 20° to the horizontal upwards, find its value.
(ii) What would be the least force to pull this body up the plane?

Question Two

(a) A ship's fuel oil storage tanks contain oil to a depth of 8 m . Calculate the load on a circular plate 540 mm diameter in the base of the tank due to the weight of fuel oil. Specific gravity of fuel is 0.8 , while specific weight of water is $9.8 \mathrm{KN} / \mathrm{m}^{3}$.
(b) A dock gate is 5 m high and 10 m wide. It is supported at its base A and held vertical by a cable at the top of the gate at an angle of 30° as shown below. There is a total depth of 3 m of seawater of density $1030 \mathrm{~kg} / \mathrm{m}^{3}$ on one side of the gate. Determine the tension in the cable.

Figure 1

Question Three

(a) A uniform beam with mass of 32 kg is 16 m long and rests horizontally on two vertical supports. One support is 2 m from the left-hand end of the beam and the other is 3 m from the right-hand end. The beam carries concentrated loads of 1.3 KN at the left-hand end and 1.5 KN at the right-hand end. The beam also carries a uniformly distributed load of $100 \mathrm{~N} / \mathrm{m}$ length over the first 10 mm from the left-hand end. Calculate the reactions at the supports.
(b) The diagram below shows a number of forces in the same vertical plane acting on a light horizontal beam. Calculate:-
(i) The magnitude and direction of the equilibrant force
(ii) The distance from C where this equilibrant force should be applied to keep the beam in equilibrium.

Figure 2

Question Four

(a) The figure below shows a steel strut with two grooves cut out along pat of its length. Calculate the total compression of the strut due to a load of $240 \mathrm{KN} . \mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$
(b) An aluminium tie rod is 48 cm long and 15 mm diameter. If it is turned down to 7.5 mm diameter for a length of 6 cm at each end. Calculate the total extension due to a tensile load of $40,000 \mathrm{~N}$. $\mathrm{E}=70 \mathrm{GN} / \mathrm{m}^{2}$

Question Five

(a) Derive the three equations of linear motion using letters $u, v, t ., a$ and s.
(b) A pile-driving hammer of mass 0.5 tonne falls 2.4 m from rest on to a pile of mass 145 kg / There is no rebound and the pile is driven 150 mm into the ground. Calculate:-
(i) The common velocity after impact
(ii) The average resisting force of the ground in bringing the pile and driver to rest.

