

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE DEGREE OF: BACHELOR OF SCIENCE IN STATISTICS AND COMPUTER SCIENCE BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER, BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY SCIENCE

SMA 2101/AMA 4103: CALCULUS 1 END OF SEMESTER EXAMINATION TIME: 2 HOURS

SERIES: MAY 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 5 questions. **ATTEMPT QUESTION ONE AND ANY OTHER TWO.**

Do not write on the question paper.

Question ONE

(a) Find the first four derivatives of the function
$$f = \sin(3y) + e^{-2y} + \ln(7y)$$
 (4mks)

b) Determine the stationery points of $g(x) = 2x^3 - 9x^2 + 36$ hence sketch the graph (7mks)

c) Given
$$f(x) = 3x^2 - x + 10$$
 and $g(x) = 1 - 20x$ find
i) $(fog)(x)$ (4mks)
ii) $(gof)(x)$ (2mks)

©Technical University of Mombasa

Page 1 of 3

d) A rectangle is to be inscribed in a circle of radius 4cm, determine the largest possible area of the rectangle (5mks)

e) Evaluate the following limits

$$\lim_{x \to \infty} \frac{x+1}{2x+1} \tag{3mks}$$

$$\lim_{x \to 0} x \cot x \tag{3mks}$$

f) Find the derivative of
$$g(t) = \frac{t}{t+1}$$
 using first principal (5mks)

Question TWO

a) Find the maximum and minimum values of the function $f(x) = x^3 - 2x^2 - 5x + 6$ hence sketch the curve

i)
$$\lim_{x \to 5} \frac{x^2 - 18x + 15}{x - 5}$$
 (2mks)

ii)
$$\lim_{x \to 0} \frac{\cos x}{2}$$
 (2mks)

iii)
$$\lim_{x \to \infty} \frac{6x - 1}{2x - 1}$$
 (2mks)

c) Given f(x) = 2x+1 and $g(x) = \frac{x}{3}$. Find $(gof)^{-1}$

Question 3 (20marks)

a) A rectangular plot is to be enclosed by 300m of fencing mesh what is the maximum possible area that can	
be enclosed	(7mks)
b) State 3 conditions for a function $f(x)$ to be continuous at a point $x = a$	(3mks)
c) Find the derivatives of the following functions.	
$\sum \left(-\frac{1}{2} \right)$	

i)
$$y = \sqrt{x(x+1)}$$
 (2marks)

(10mks)

(4mks)

ii)
$$y = \frac{\sin x}{\ln x}$$
, $x > 0$ (4mks)

iii)
$$y = 2x^3 e^{3x}$$
 (4mks)

Question 4 (20marks)

a) Show that
$$\frac{dy}{dx} = \arcsin x = \frac{1}{1 - x^2}$$
 (4mks)

b) Find the derivative of
$$xy + x - 2y = 5$$
 (4mks)

c) Evaluate the following limits

i)
$$\lim_{x \to 0} \frac{x}{\sin 7x}$$
(4mks)

ii)
$$\lim_{x \to 0} \frac{\tan x}{x}$$
 (4mrks)

iii)
$$\lim_{x \to \infty} \frac{4x^3 - 21x = 6}{3x^3 + x^2 - 9}$$
(4mks)

Question 5 (20 marks)

a)
$$f(x) = x^4 + 2x^3 - 3x^2 - 4x + 4$$
 find the critical points of the function .Hence sketch the curve (10mks)

- b) An open cylindrical container with circular base is to hold 64 litres of water. Find its dimensions so that the amount of metal required is minimum (4mks)
- c) Find the tangent and normal to the function $y = \frac{3x^2 1}{x}$ at the point (1,2) (3mks)
- d) A particle rotates anticlockwise from rest according to $\theta = \frac{t^3}{50} t$ where θ is in radians, and t is in seconds. Calculate the displacement, the angular velocity and the acceleration at the end of 10 seconds (3mks)