

TECHNICAL UNIVERSITY OF MOMBASA
A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS
APRIL 2016 SERIES EXAMINATION
UNIT CODE: AMA 4102 UNIT TITLE: GEOMETRY
MAIN EXAMINATION
TIME ALLOWED: 2HOURS
INSTRUCTIONTO CANDIDATES:
You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

## QUESTION ONE COMPULSORY (30 MARKS)

a. Prove that $\frac{1+\cot \theta}{1+\tan \theta}=\cot \theta$
b. Find the equation of the straight line whose unit normal is $(5,2)$ and passes through the point $(2,1)$. Write the equation in the form $A x+B y+C z=0$
c. Determine the diameter and the circumference of a circle if an arc of length 4.75 subtends an angle of 0.91 rads
d. Express $(4.5,5.16 \mathrm{rad})$ in Cartesian coordinate and hence present it on the axis (4 marks)
e. A force of 4 N is inclined at angle of $45^{\circ}$ to a second force acting at a point. Find the magnitude of the resultant of these two forces and direction of the resultant with respect to the 7 N force by triangle method and by measurement.
f. Solve triangle DEF and find its area given that $E F=35 \mathrm{~mm}, \mathrm{DE}=25 \mathrm{~mm}$ and angle at E is $64^{0}$
(6 marks)
g. The equation of a circle is given by $x^{2}-6 x+y^{2}+4 y-3=0$. determine the center and radius of the circle

## QUESTION TWO (20 MARKS)

a. Find the points in which the lines $5 y=3 x-5$ cuts the hyperbola $4 x^{2}-25 y^{2}=15$ and the equations of the tangent to the hyperbola at these points.
(5 marks)
b. Given the equation of the line in the form $\frac{x-2}{3}=\frac{y-4}{5}=\frac{z-7}{2}$. Express it in the form $r=$ $a+t u$ hence determine whether the point $(8,14,11)$ lies on the line.
(6 marks)
c. Determine the length of a tangent from the point $(5,7)$ to the circle whose equation is $x^{2}+y^{2}-4 x-6 y+9=0$
(5 marks)
d. Two cars P and Q are travelling towards the junction of two roads which are at right angles to one another. Car $P$ has a velocity of $45 \mathrm{~km} / \mathrm{h}$ due East and car $Q$ has a velocity of $55 \mathrm{~km} / \mathrm{h}$ due south. Calculate
i. The velocity of $\operatorname{car} P$ relative to $\operatorname{car} \mathrm{Q}$
(2 marks)
ii. The velocity of car $Q$ relative to car $P$
(2 marks)

## QUESTION THREE (20 MARKS)

a. Find the Cartesian equation of the polar equation $\operatorname{rcos}\left(\theta-\frac{\pi}{3}\right)=3 \quad$ (5 marks)
b. Find the distance from the point $(2,1)$ to the line $4 x+2 y+7=0$
c. Find the equation of the two tangent that can be drawn from the point $(2,3)$ to the parabola $y^{2}=4 x$
(5 marks)
d. Solve $3 \cos 2 \theta+\sin \theta=1$ for values of $\theta$ in the range $o \leq \theta \leq 360^{\circ}$

## QUESTION FOUR (20 MARKS)

a. Given that $p=2 i+j-k$ and $q=i-3 j+2 k$. Determine

| i. | $P . Q$ | (1 marks) |
| ---: | :--- | :--- |
| ii. | $P+Q$ | (1 marks) |
| iii. | $\|P+Q\|$ | (1 marks) |
| iv. | $\|P\|+\|Q\|$ | (1 marks) |

b. Find the length of the tangent to the circle $x^{2}+y^{2}-2 x+4 y-4=0$ from the center of the circle $x^{2}+y^{2}+6 x+8 y=0$
c. Plot a graph of the polar equation $r=3 \cos 3 \theta$ in the range $0 \leq \theta \leq 360^{\circ}$ and hence state the rectangular coordinate from the polar equation
(6 marks)
d. Describe the circle represented by $x^{2}+y^{2}-4 x-2 y+1=0$ and hence determine the equation of the tangent and the normal line at the point $(2+\sqrt{3}, 2)$ ( 4 marks)

## QUESTION FIVE (20 MARKS)

a. If $4 i+j-2 k, q=3 i-2 j+k$ and $r=i-2 k$. find
i. $(p-2 q) x r$
(2 marks)
ii. $P x(2 r x 3 q)$ (3 marks)
b. If $\cos A=\frac{2}{5}, \tan B=\frac{5}{12}$ and $B$ being acute. Find the value of $\sin (A+B)$ (3 marks)
c. Show that the distance between the line $A x+B y+C=0$ and a point $(x, y)$ is given by $r=\frac{A x+B y+C}{\sqrt{A^{2}+B^{2}}}$
(7 marks)
d. Find the equation for a hyperbola with asymptotes $y= \pm \frac{4}{3} x$ and a foci $( \pm 10,0)$

## THIS IS THE LAST PRINTED PAGE

