

TECHNICAL UNIVERSITY OF MOMBASA
A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

APRIL 2016 SERIES EXAMINATION
UNIT CODE: AMA 4102 UNIT TITLE: GEOMETRY
SPECIAL/SUPPLIMENTARY EXAMINATION
TIME ALLOWED: 2HOURS
INSTRUCTIONTO CANDIDATES:
You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE COMPULSORY (30 MARKS)

a. If $\sin A=\frac{3}{5}$ and $\cos B=\frac{15}{17}$ where A is obtuse and B is acute, find the exact value of $\sin (A+B)$
(4 marks)
b. Sketch the curves depicting the following equations

$$
\begin{equation*}
x=\sqrt{9-y^{2}} \tag{3marks}
\end{equation*}
$$

c. $y^{2} \mathrm{~A}$ constant force of $F=10 i+2 j-k$ newtons displaces an object from
$A=10 i+2 j-k$ to $B=2 i-j+3 k$ in metres. Find the work done in Newton meters
d. State a vector equation of the line passing through the point $P(4,1)$ and $Q(7,-5)$
(4 marks)
e. Determine the equation of the tangent to the circle $x^{2}+y^{2}-4 x-2 y-8=0$ which are parallel to the line $3 x+2 y=0$
(5 marks)
f. Calculate correct to 3 significant figures, the coordinates x and y to locate the hole center at P as shown in the figure

g. Prove that $\frac{\cos ^{2} \theta\left(1-\sec ^{2} \theta\right) \sin \theta}{\left(1-\sin ^{2} \theta\right) \cos \theta \tan ^{2} \theta}=-\tan \theta$

QUESTION TWO (20 MARKS)

a. A building site is in the form of quadrilateral as shown in the figure. If its area is $1510 \mathrm{~m}^{2}$. Determine the perimeter of the site
(4 marks)

b. Find the scalar equation of the straight line with normal $(-6,4)$ that passes through the point (-3, -7)
c. Neatly draw the graph of $r=2 \sin 2 \theta$ in the range $0 \leq x \leq 360^{\circ}$. Hence write the polar equation into Cartesian form
d. Find the eccentricity and the semi latus rectum of the ellipse $2 x^{2}+3 y^{2}=5$
(6 marks)

QUESTION THREE (20 MARKS)

a. Determine the diameter and circumference of a circle if an arc of length 4.75 cm subtends an arc 0.91 rad
b. A line passes through $(5,-2)$ with direction vector $(2,6)$
i. State the parametric equations of this line
ii. What point on the line corresponds to the parameter value $t=3$
iii. Does the point $(1,-8)$ lie on this line?
iv. Find the y-intercept and the slope of the line. Then write the equation of the line in the form $\mathrm{y}=m x+c$
c. A line $A B$ is the diameter of a circle such that the coordinates of A nad B are $(-1,1)$ and ($5,-1$) n respectively.
i. Determine the centre and radius of the circle

ii. Find the equation of the circle

d. Solve the equation $12 \cos ^{2} \theta+\sin \theta=11$

QUESTION FOUR (20 MARKS)

a. Calculate the resultant of $v_{1}-v_{2}+v_{3}$

$$
\begin{aligned}
& V_{1}=22 \text { units at } 140^{\circ} \\
& V_{2}=40 \text { units at } 190^{\circ} \\
& V_{3}=15 \text { units at } 290^{\circ}
\end{aligned}
$$

b. Find the distance from a point $s(1,1,5)$ to the line given by

$$
\begin{aligned}
& x=1+t \\
& y=3-t \\
& z=2 t
\end{aligned}
$$

(5 marks)
c. Find an equation in the form $a x+b y+c=0$ for a line which passes through the point of intersection of the lines $x-3 y=4$ and $3 x+y=2$ being also perpendicular to the line $4 x-3 y-7=0$
d. Find vector v joining point P and Q where point P has coordinates $(4,-1,3)$ and point Q has coordinates (2,5, 0). Also find $|v|$

QUESTION FIVE (20 MARKS)

a. (i) Find the equation of a circle center $(-2,3)$ and radius 4 units
(2 marks)
(ii) Find the equation of a line through the point $(-1,3,4)$ and perpendicular to the plane

$$
\begin{equation*}
3 x-y-z=5 \tag{2marks}
\end{equation*}
$$

b. Discuss the equation stating all the properties of the hyperbola
$x^{2}-4 y^{2}+2 x+8 y-7=0$ hence sketch the curve indicating the asymptotes foci and vertex
c. If $\sin A=\frac{3}{4}$ and $\csc B=\frac{17}{8}$ where A and B are acute angles, without using mathematical tables or calculator evaluate $\frac{3 \sin A+2 \cos A}{\sec B}$
d. Four the vector $a=i+4 j-2 k$ and $b=2 i-j+3 k$.

Find
i. $\quad a x b$
(3 marks)
ii. $|a x b|$

