

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MEDICAL ENGINEERING

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MEDICAL ENGINEERING

AMA2351: ENGINEERING MATHEMATICS VI

END OF SEMESTER EXAMINATION

SERIES:APRIL2016

TIME:2HOURS

DATE:9May2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Ouestion ONE

- a) Given that x_r is the approximation of the root to the equation $x^4 + 5x 20 = 0$, determine
 - i. the better approximation
 - ii. roots of the equation taking $x_0 = 1.8$

(10 marks)

- b) Determine the first four Taylor series terms for the following
- i. $(x-1)e^x$

ii.
$$x^2 + x - 2$$

(10 marks)

c) Determine the Maclaurin series for $\sin^2 x$ hence evaluate $\int_0^{\frac{\pi}{6}} f(x) dx$ (10 marks)

Question TWO

a) Using Newton's method determine the positive roots of the quadratic equation

$$5x^2 + 11x - 17 = 0$$
 correct to three significant figures

(10 marks)

b) Determine a polynomial in x which takes on the values -3,3,11,27,57,107 when

$$x = 0,1,2,3,4,5$$
 respectively.

(10 marks)

Question THREE

Determine the Maclaurin series for the following

a.
$$sin^2x$$

b.
$$\frac{x}{\sqrt{1-x^2}}$$

c.
$$xe^{-x}$$

b.
$$\frac{x}{\sqrt{1-x^2}}$$

c. xe^{-x}
d. $\frac{x}{1+x^2}$

(20 marks)

Question FOUR

- a) Expand $log_e \frac{1+x}{1-x}$ in power series hence evaluate $log_e 3$ correct to five decimal places
- b) Use Newton-Raphson iterative method to solve $x = 2 \sin x$ taking xo = 1.5(10 marks)

Question FIVE

- a) Given the data below use Newton-Gregory interpolation to evaluate
- i) f(0.36)
- ii) f(0.44)

X	0.2	0.3	0.4	0.5	0.6
у	0.234	0.2788	0.3222	0.3617	0.3979

(10 marks)

b) Determine Maclaurin expansion for $e^x ln(1 + x)$

(10 marks)