

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR:

THE DEGREE IN BACHELOR OF SCINCE IN MECHANICAL ENGINEERING
EMG 2418: GAS DYNAMICS AND BOUNDARY LAYER THEORY
END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attempt any THREE questions.

Do not write on the question paper.

Question One

a) Explain the following terms

i. Turbulent boundary layer

ii. Laminar boundary layer

(4marks)

b) Describe fine the following boundary layer

- i. Displacement thickness
- ii. Momentum thickness
- iii. Energy thickness

(6 marks)

a) The velocity distribution in the boundary layer is given by:

$$\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$$

Where u is the velocity at a distance y from the plate and u = U at $y = \delta$, where $\delta =$ boundary layer thickness. Find

- i. The displacement thickness.
- ii. The momentum the thickness.
- iii. The energy thickness.

(10 marks)

Question Two

- a) Define the following Terms.
 - i. Drag force

ii. Lift force (4marks)

- b) State the factors on which the relative contribution of pressure force and friction drag to the total drag depends. (6 marks)
- c) On a flat plate of 2m (length) x 1m (width), experiments were conducted in a wind tunnel with a wind speed of 50km\h. The plate is kept at such angle that the co-efficient of drag and lift are 0.18 and 0.9 respectively. Determine
 - i. Drag force
 - ii. Lift force
 - iii. Resultant force
 - iv. Power exerted by the air stream on the plate.

(take density of air = 1.15kg/m^3)

(10 marks)

Question Three

- a) Explain the following terms
 - i. Streamlined bodies
 - ii. Bluff body
 - iii. Terminal velocity
 - iv. Stagnation points

(8 marks)

- b) Experiments were conducted in a wind tunnel with a wind speed of 50km/h on a flat plate of size 2m long and 1 m wide. The density of air is 1.15kg/m3. The coefficient of lift and drag are 0.75 and 0.15 respectively. Calculate
 - i. The lift force
 - ii. The drag force.
 - iii. The resultant force
 - iv. Direction of resultant force.
 - v. Power exerted by the air on the plate.

(12 marks)

Ouestion four

a) State the TWO properties which the velocity of sound depends.

(2 marks)

b) Define the following terms of flow which depend on Mach number:

- i. Subsonic flow
- ii. Sonic flow
- iii. Supersonic flow (6 marks)
- c) A gas is flowing through a horizontal pipe which is having area of cross-section as 400cm2, where pressure is 40N/cm2 (gauge) and temperature 15Oc. At another section the are of cross section is 20cm2 and pressure is 30N/cm2(gauge). If the mass rate of flow of gas through the pipe is 0.5kg/s, Find the velocities of the gas at these sections, assuming as isothermal change. Take R=292NM/KG Ok and atmospheric pressure =10N/cm (6marks)
- d) Find the sonic velocity for the following fluids
 - i. Crude oil of sp gravity 0.8 and bulk modulus 153036N/cm2
 - ii. Mercury having a bulk modulus of 2648700N/cm2

(6marks)

Question five

a) What is turbulence? (2 marks)

- b) Describe the following types turbulent motions
 - i. Wall turbulence.
 - ii. Free turbulence.
 - iii. Convective turbulence.

(4 marks)

c) What are the characteristics of a turbulent flow?

- (3 marks)
- d) In a pipe of 360mm diameter having turbulent flow, the centre –line velocity is 7m/s and that at 60 mm from the pipe wall is 6m/s. Calculate the shear friction velocity. (5marks)
- e) Calculate the wall shearing stress in a pipe of diameter 100 which carries water .The velocities at the pipe centre and 30 mm from the pipe centre are 2m/s and 1.5m/s respectively. The flow in the pipe is given as turbulent. (6 marks)