

# **Technical University of Mombasa**

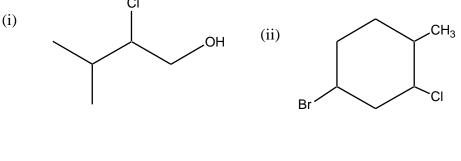
**Faculty of Applied and Health Sciences** 

## DEPARTMENT OF MEDICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF MEDICAL LABORATORY SCIENCES BMLS 13M(Y1 S1)

# ACH 4105: ORGANIC CHEMISTRY

# SPECIAL/SUPPLEMENTARY EXAMINATION

OCTOBER 2013 SERIES


2 HOURS

Instructions to candidates:

This paper consist of **FIVE** questions Answer questions **ONE** (compulsory) and any other **TWO** 

### **Question ONE**

a) Give IUPAC name to each of the following compounds:

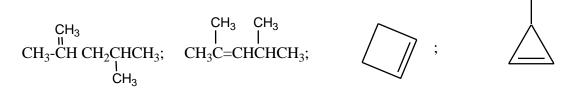


(iii)  $CH_3 \xrightarrow{CH_3} COOH (iv) CH_3CHBr_2$  $|_{CH_3} CH_3$ 

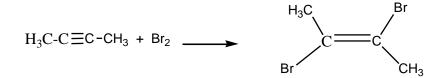
(4marks)

- b) Draw the structure for each of the following compounds:
  - (i) 2,2,4-Trimethyl pentane
  - (ii) 2,3-Dichloro-3, 4-dimethyl-1-hexene

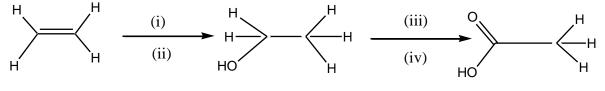
- (iii) 1-methyl cydobutanol
- (iv) Methyl ethanoate


(4marks)

- c) An organic compound contains 48.7% carbon, 8.1% hydrogen and the rest oxygen. Determine its empirical formula. (C = 12, H = 1, 0 = 16) (3marks)
- d) Give the structures of the compounds that give the following products upon reaction with ozone :


(i) 
$$CH_2O + CH_3CH_2 \stackrel{\bigcup}{C} CH_3$$
 (2 marks)

(ii) 
$$\begin{array}{c} \mathsf{O} \\ \mathsf{H} \mathsf{C} \\ \mathsf{H} \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{C} \\ \mathsf{H} \mathsf{C} \end{array} \right)$$
 (2 marks)


e) State which one among the follow has the highest octane rating and give reasons for your choice.

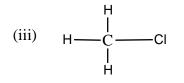


- f) Give the dash formula and Bond line formulas for the following molecules
  - (i)  $CH_3CH$  (Cl) CH (CH<sub>3</sub>)  $CH_3$
  - (ii) CH<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub>
- g) Using curly arrows, show the reaction mechanism for the reaction below: (4marks)



h) Give the reagents (i) to (iii) required to carry out the following transformations:

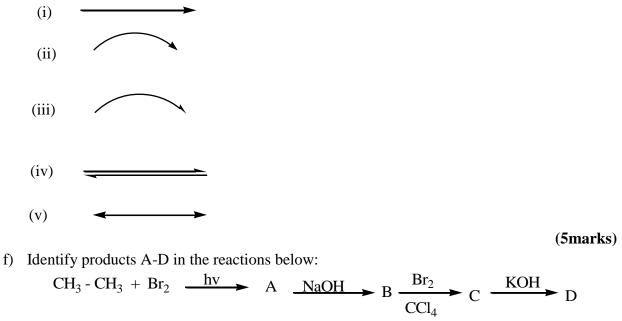



(3 marks)

(3 marks)

 i) Arrange the following molecules in order of increasing boiling point. CHCl<sub>3</sub>, CH<sub>2</sub>Cl, CCl<sub>4</sub>, CH<sub>3</sub>Cl. (1mark)

#### **Question TWO**


- a) Explain the term hybridization (2marks)
- b) State the THREE types of hybridization adopted carbon
- c) Show diagrammatically how electrons are hybridized in methane, CH<sub>4</sub> (3marks)
- d) Indicate the type of hybridization present on the carbon atom in each of the following molecule:
  - (i)  $H C \equiv N$
  - (ii) H C=0



(5marks)

(3marks)

e) Explain the importance of each of the following arrows as used in organic chemistry:



#### **Question THREE**

- a) Differentiate between:
  - (i) Pyrolysi and combustion reaction
  - (ii) Nucleophile and electrophile

(4marks)

- b) Give all products obtained when propane, CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub>, undergoes
  - (i) Pyrolysis (4 products)
  - (ii) Combustion (2 products)

c) Show the polarity of the bonds by using  $\delta$ + and  $\delta$ - in the following molecules:

(iii) 
$$CH_3 - CH - CH_3$$

- d) Combustion of a 3.0mg of H<sub>2</sub>O.
- e) (i) Calculate the % composition of the compound. (4marks)
  (ii) Determine the empirical formula of the compound. (3marks)

#### **Question FOUR**

- a) Give THREE visual chemical tests you would perform to distinguish between n-hexane and 2,6octadiene. (3marks)
- b) The reaction of 60ml(1mol) ethanoic acid and 46ml (0.5mol) butan-1-o1 yeilds 40g of butyl ethanoate.

|    | (i)                                                                          | Write the chemical equation for the reaction.      | (1mark)  |
|----|------------------------------------------------------------------------------|----------------------------------------------------|----------|
|    | (ii)                                                                         | Name the process above                             | (1mark)  |
|    | (iii)                                                                        | Indicate the catalyst that must be used            | (1mark)  |
|    | (iv)                                                                         | State the limiting reagent                         | (1mark)  |
|    | (v)                                                                          | Find the number of moles to be produced            | (3marks) |
|    | (vi)                                                                         | Determine the % yield                              | (3marks) |
|    | (vii)                                                                        | Explain why its not practicable to get 100% yield. | (3marks) |
| c) | Write a chemical equation for the reaction between ethanol and sodium metal. |                                                    |          |

d) Give the products E-G in the following reactions:

(i) 
$$CH_3CH_2OH + HCl \longrightarrow E$$

- (ii)  $CH_3CH_2CH_2CH_2 + KOH \xrightarrow{alcohol} F$
- (iii)  $CH_3CH = CH_2 + HBr \longrightarrow G$

#### (3marks)

#### **Question FIVE**

- a) Write down the initiation, chain propagation and chain termination steps for the free radical bromination of propane in presence of organic peroxide. (6marks)
- b) For the following transformation

$$\begin{array}{ccc} H_{3}C & \longrightarrow & C \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

(i)Give the product H(1mark)(ii)Write the reaction mechanism using curly arrows(3marks)

c) Provide the major organic products I-R for the reactions below:

(i) 
$$CH_3CH=CH_2 \xrightarrow{HCl} I$$

(ii) 
$$CH_3CH=CH_2 \xrightarrow{HCl} J$$

(iii) 
$$CH_3C \equiv CCH_3 \xrightarrow{H_2,pt} K$$

(iv) 
$$CH_3C = CCH_3 \xrightarrow{Na, NH_3} L$$

(v) 
$$CH_3C \equiv CCH_3 \xrightarrow{\text{Lindlar's}} M$$

(vi) 
$$CH_3(CH_2)CH_2Cl \xrightarrow{\text{LiAlH}_4} N$$

(vii) 
$$CH_3CH=CHCH_3 \xrightarrow{KMnO_4} O$$

(viii) 
$$CH_3COOH + CH_3CH_2OH \longrightarrow P$$

(ix) 
$$CH_3CH_2COCH_3 \xrightarrow{\text{LiAlH}_4} Q$$

(x) 
$$CH_2=CH_2 + H_2 \xrightarrow{Ni} R$$

(10marks)