TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF MATHEMATICS AND COMPUTER SCIENCE & BACHELOR OF SCIENCE IN STATISTICS AND COMPUTER SCIENCES

AMA 4209: CALCULUS III

END OF SEMESTER EXAMINATION

SERIES:APRIL2016

TIME:2HOURS

DATE: Pick DateMay2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

QUESTION ONE (COMPULSORY, 30Marks)

- a) Find the $\lim_{t\to\infty} \frac{t^2+t}{2t^2+1}$ (2 marks)
- b) Two stationary patrol cars with radars are 5km apart on a high way and a truck passes the first patrol car, its speed is clocked at 55km/h. Four minutes later, when the truck passes the second patrol car, its speed is clocked at 50km/h. Prove that the truck must have exceeded the speed limit of 60 km/h at some point during the interval. (3 marks)
- c) Apply the integral test to the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$. To determine divergence or convergence

(5marks)

d) Use Maclaurin theorem to expand the function $f(x) = e^{2x}$ upto the term with x^5 .

(5 marks)

- e). Determine convergence/divergence of the series $\sum_{n=0}^{\infty} \frac{n^2 2^{n+1}}{3n}$ using ratio test. (5mks).
- f) The equation $xz + y \ln x x^2 + 4 = 0$ defines x as a differentiable function of two

independent variables y and z, find
$$\frac{\partial x}{\partial y}$$
, $\frac{\partial x}{\partial z}$ at the point (1,-1,-3). (6 marks)

g) Find the rectangular form of the polar function $r = 2\cos 2\theta$ (4 marks)

QUESTION TWO (20 Marks)

a)Evaluate
$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 6}}{5 - 2x}$$
 (5marks).

- b). Test whether the sequence $\{a_n\}$ where $\{a_n\}=\frac{n^2}{(n+1)^2}$ is convergence and find its limit (5 Marks)
- c). Find the value of $\frac{df}{dt}$ at t = 0 if f(x,y,z) = xy + z and $x = \cos t$, $y = \sin t$, z = t. (5 marks) d). Find the area of the region R bounded by y = x and $y = x^2$ in the first quadrant. (5 marks)

QUESTION THREE (20MKS)

a) Calculate the volume bounded by $f(x, y) = 1 - 6x^2y$ on the region

$$R: 0 \le x \le 2, \qquad -1 \le y \le 1.$$
 (4 marks)

b) Find the Taylor polynomials P_0 , P_1 , P_2 , P_3 and P_4 for $f(x) = \ln x$ contained at c = 1.

(6 marks)

c) Evaluate
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$
 (6 marks)

d) Find the sum of the geometric series
$$\sum_{n=0}^{\infty} \frac{3}{2^n}$$
. (4 marks)

QUESTION FOUR (20 Marks)

- a) Find the rectangular coordinates corresponding to the polar coordinate $\left(2, \frac{2\pi}{3}\right)$. (4 marks)
- b). The probability density function $f(x) = \frac{t}{1+x^2}$ has the area under the curve in the interval

 $(-\infty,\infty)$ Equals to 1. Determine the values of t.

(8marks)

c).). Determine if the function is convergent or divergent

$$\int_0^3 \frac{1}{\sqrt{3-x}} dx \tag{4 marks}$$

d) Find the total differential of $z = x^3y + x^2y^2 + xy^3$ (4 marks)

QUESTION FIVE (20 Marks)

- a) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} 3(x-2)^n$ (4 marks)
- b) Find a sequence $\{a_n\}$ whose first five terms are $\frac{2}{1}$, $\frac{4}{3}$, $\frac{8}{5}$, $\frac{16}{7}$, $\frac{32}{9}$, and determine whether it converges or diverges. (6 marks)
- c) Let R be the square $\{(x, y) | -1 \le x \le 1, -1 \le y \le 1\}$. Calculate the volume of the solid region determined by the graph of $f(x, y) = 8 x^2 y^2$ over R. (6 marks)
- d) Evaluate $\frac{\lim_{x\to 0} \frac{\tan x x}{x^3}}{(4 \text{ marks})}$