TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY
 DEPARTMENT OF MEDICAL ENGINEERING
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MEDICAL ENGINEERING
 AMA2251:ENGINEERING MATHEMATICS IV
 END OF SEMESTER EXAMINATION
 SERIES:APRIL2016
 TIME:2HOURS

DATE:9May2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

a) An inductor, resistor and capacitor are connected all in series to a supply voltage Eo
i. derive an equation involving current and time
ii. solve for charge and current given that $\mathrm{Eo}=40 \mathrm{~V}, \mathrm{C}=250 _\mathrm{F}, \mathrm{L}=50 \mathrm{mH}$, and $\mathrm{R}=30$. take $\mathrm{i}=0$ and $q=0$
iii. iii) form the circuit calculate the voltage across the components involved.
b) Use Laplace transform to solve $2 \frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}-5 x=6 \sin 2 t$
c) Solve the following differential equation
i. $\frac{d y}{d x}=\frac{3}{x}-\frac{y}{x}$
ii. $2 y(1-x)=-(x+x y) \frac{d y}{d t}$ (10 marks)

Question TWO

a) Use Laplace transform to solve the following differential equation $\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+8 x=0$ given that $\mathrm{x}(0)=4$ and $\mathrm{x}^{\prime}(0)=8$
b) A body executes damped forced vibrations defined by the equation
$\frac{d^{2} y}{d x^{2}}+2 k \frac{d y}{d x}+b^{2} y=e^{-k t} \sin \omega t$. Solve the differential equation for the following conditions
i. $\quad \omega^{2}=b^{2}-k^{2}$
ii. $\quad \omega^{2} \neq b^{2}-k^{2}$

Question THREE

Using the substitution $x=e^{t}$
a. Express the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-2 y=x+1$ in the form

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(t)
$$

b. Solve the equation in (a) above taking $y=y, x=1$ and $y^{\prime}=0.5$
(20 marks)

Question FOUR

a) Solve $\frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}+3 x=t^{3}$
(10 marks)
b) Solve the following simultaneous equation using Laplace transform given that $t=0, x=4, y=$ $2 x^{\prime}=y^{\prime}=0$
$\frac{d^{2} x}{d t^{2}}+2 x=y$
$\frac{d^{2} y}{d t^{2}}+2 y=x$
(10 marks)

Question FIVE

a) Solve the following differential equations
i. $x-y+x \frac{d y}{d x}=0$
ii. $\quad \frac{d y}{d x}+x=2 y$
b) Determine the inverse Laplace transform for the following
i. $\frac{5 s^{2}-2 s-19}{(s+3)(s-1)^{2}}$
ii. $\frac{2 s^{2}-9 s-35}{(s+1)(s-2)(s+3)}$

