# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE 

University Examination 2010
THIRD YEAR/FIRST SEMESTER EXAMINATION
FOR THE DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2306: SURVEYING III

SERIES: APRIL/MAY 2010
TIME: 2 HOURS

## Instructions:

Answer Question ONE and any other TWO questions.

## QUESTION ONE

(a) A straight road is to be cut along a hillside having a transverse slope of $1: s$ such that the depth of the formation level at the centre-line is $h$, the formation wideth $b$ and side slopes 1:n. Derive expressions for calculating the road plan width, $w$, and cross sectional area, A. ( 6 marks)
(b) A road embankment is to be constructed between chainages $0+100$ and $0+200$. The ground surface is horizontal in transverse section, but sloping downwards between two chainages at 1:30 The formation level is horizontal both cross-section and longitudinally directions with the width 13 m and side slopes $1: 2$. If the height of fill at chainage $0+100$ is 1 m , calculate the volume of earthworks, using cross-section areas at 25 m intervals. Use End-area Method.

## QUESTION TWO

The following data refers to a section of a proposed road construction.
Embankments are to be built with side slopes 1:2 and cuttings with slopes 1:3.
The road formation width is 13 m and the ground horizontal across the section.

| Chainage | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | 2300 | 2400 | 2500 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Centre <br> height $(m)$ | -3.0 | -2.0 | -2.0 | 4.0 | 3.0 | -1.0 | -2.5 | -3.5 | -4.0 | -2.5 | -1.0 | 3.0 | 3.5 | 5.0 | 5.5 | 6.5 |

Plot the longitudinal section of the road and construct a Mass haul diagram for the section. Assume the formation level is horizontal over the whole section at a reduced level of 30 m . Take shrinkage factor as 0.8 .

## QUESTION THREE

(a) To find the area of a pond situated near a straight road perpendicular offsets at 10 m intervals were measured from the centre-line of the road to the near and far boundaries of the pond. The results were as follows:-

| Chainage | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Offset to near boundary (m) | 20 | 16 | 4 | 12 | 18 | 23 | 17 | 15 | 20 |
| Offset to far boundary $(\mathrm{m})$ | 20 | 30 | 34 | 48 | 58 | 63 | 54 | 32 | 20 |

Compute the area of the pond using:
(i) Trapezoidal Rule
(ii) Simpson's Rule
(10 marks)
(b) In a proposed hydroelectric project a storage reservoir is required to provide a storage of 4.5 million $\mathrm{m}^{3}$ between the lowest draw down (LDD) and the top water level (TWL). The areas contained within the stated contours and upsteam face of the dam were as follows:

| Contour | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area $\left(\mathrm{x} 10^{4} \mathrm{~m}^{2}\right)$ | 30 | 25 | 23 | 17 | 15 | 13 | 7 | 2 |

If the LDD is to be 68 metres, calculate the TWL for full storage capacity.
Hint: Use the End-area method for calculating volumes.
(10 marks)

## QUESTION FOUR

(a) Describe the procedure of locating the point of intersection of the straights of a simple circular curve in case of obstacles.
(10 marks)
(b) Two straights AI and BI meet at I on the side of a river. On the near side of the river, two points E and F were situated on the straights AI and BI respectively. The distance EF was measured as 90.00 Metres. Angles AEF and BFE were found to be $170^{\circ} 52^{`}$ and $163^{\circ} 32^{`}$ respectively. The radius of the circular curve is 600 m . Determine the location of the tangant points with respect to the points E and F.
(10 marks)

## QUESTION FIVE

(a) Describe the method of setting out simple circular curves by taking offsets from the long chord.
(b) A simple circular curve has n external deflation angle of $23^{\circ} 04^{\prime} 21^{\prime \prime}$. The radius of the curve is 250 m . Calculate the ordinates at 10 m intervals on the long chord.

