THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 University Examination 2010

 SECOND YEAR/FIRST SEMESTER EXAMINATION

 SECOND YEAR/FIRST SEMESTER EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING

 FOR THE DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING}

ECE 2204: STRENGTH OF MATERIALS I

SERIES: APRIL/MAY 2010
TIME: 2 HOURS

Instructions:

You should have the following for this examination:

- Answer booklet
- Mathematical table/pocket calculator

Question ONE is Compulsory. Answer any other TWO questions from the remaining FOUR questions.

QUESTION ONE

(a) Sketch a typical stress-strain curve for mild steel and define the FOUR most important points on it.
(b) Define the following terms:
(i) Stress
(ii) Total stress and unit stress
(iii) Compressive strain
(c) A steel bar is 900 m long; its two ends are 40 mm and 30 mm in diameter and the length of each rod is 200 mm . The middle portion of the bar is 15 mm in diameter and 500 mm long. If the bar is subjected to an axial tensile load of 15 KN , find its total extension. (8 marks)
(d) An element in plane stress is subjected to stresses $\sigma_{x}=16,000 \mathrm{~N} / \mathrm{mm}^{2}$, $\sigma_{y}=6,000 \mathrm{~N} / \mathrm{mm}^{2}$ and $\tau_{x y}=4,000 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the stresses on an element inclined at an angle of $\theta=45^{\circ} \mathrm{C}$

QUESTION TWO

(a) Proof that for body subjected to a direct tensile stress in one plane, the magnitude of maximum shear stress on an inclined section is half of the tensile stress.
(b) Draw the Mohr's stress circle for direct stresses of $65 \mathrm{MN} / \mathrm{m}^{2}$ (tensile) and $35 \mathrm{MN} / \mathrm{m}^{2}$ (compressive) and estimate the magnitude and direction of the resultant stresses and planes making angles of 20° and 65° with the plane of the first principle stress. Find also the normal and tangential stresses on truss planes. Confirm your results analytically.

QUESTION THREE

(a) Using the theory of simple bending, prove the relationship

$$
\begin{equation*}
\frac{M}{I}=\frac{\sigma}{Y}=\frac{E}{R} \tag{8marks}
\end{equation*}
$$

(b) Determine the dimensions of joist of timber for span 8 m to carry a brick wall 200 mm thick and 5 m high, if the density of the brick work is $1850 \mathrm{Kg} / \mathrm{m}^{3}$ and the maximum permissible stress is limited to $75 \mathrm{MN} / \mathrm{m}^{2}$. Given that depth of joist is twice the width.
(12 mark)

QUESTION FOUR

(a) Derive the expression for the moment of inertia of a rectangular section by the integration method.
(b) A T-Beam is made up of two plates and two angles as shown in figure 4. Determine the moment of inertia of T-Section above an axis passing through the centroid of the section and parallel to the top plate.
(20 marks)

QUESTION FIVE

(a) From figure 5, draw the shear force diagram (SFD) and bending moment diagrams (BMD) for the beam AB.
(b) Determine the equation for bending moment and shear force for a straight beam with uniformly distributed Load.

