DEPARTMENT OF BUILDING AND CIVIL ENGINEERING UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN CIVIL ENGINEERING

BSCE

ECE 2317 : THEORY OF STRUCTURES IV

SEMESTER EXAMINATION

APRIL 2014 SERIES
2 HOURS
Instructions to candidates:
This paper consists of FIVE questions
Answer question ONE (compulsory) and any other TWO questions

QUESTION ONE

a) Fig Q1(a) below is a roof truss loaded at point C with 225 KN . Using complimentary Virtual work method, Determine vertical displacement at point C.

Take - Cross-section Area (A) of members $=2500 \mathrm{~mm}^{2}$

$$
-\quad E=200 \mathrm{KN} / \mathrm{mm}^{2}
$$

(14 marks)
b) Define the following terms as used in the analysis of structures.
(i) Principle of least work
(ii) Complimentary virtual work
(iii) Castaglianos $2^{\text {nd }}$ theorem
c) Figure Q1C is a 20 m cantilever beam carrying a point load at its end B. Determine the deflection at the free end using virtual work method: Given that:

$$
\begin{array}{ll}
\mathrm{I} & =5,000 \mathrm{~mm}^{4} \\
\mathrm{E} & =200 \mathrm{KN} / \mathrm{mm}^{2}
\end{array}
$$

QUESTION TWO

Fig Q2 is a beam fixed at one end and rolled at the other. The beam carries point load of 50 KN at $\mathrm{B}, 8 \mathrm{~m}$ from point A . Given that, the length of the beam is 15 m , determine reactions at
supports using the method of least work.

Fig. Q2
(20 marks)

QUESTION THREE

a) From the concept of work and energy theorem, and using a well labeled sketch, show that, the total work done over a full range in a structure is given by

$$
W=\int_{O}^{D} P \cdot d A
$$

(5 marks)
b) Figure Q3(b) is a beam 40 m long carrying a point load at C as shown. Using conjugate beam method, find reaction at B.

Fig. Q3(b)
(15 marks)

QUESTION FOUR

Figure Q 4 is a roof truss 8 m long loaded at points BDE and supported at points A and C as
shown. Using Castaglianos $1^{\text {st }}$ theorem find vertical deflection at point D , given that, the crosssectional areas of all members is uniform at $0.0025 \mathrm{~m}^{2}$ and $\mathrm{E}=230 \mathrm{KN} / \mathrm{mm}^{2}$.

(20 marks)

QUESTION FIVE

a) State Mohrs $1^{\text {st }}$ and $2^{\text {nd }}$ therems of slope and deflection of beams .
b) Figure Q 5 is a propped cantilever beam loaded at point D with 100 KN . Find the maximum deflection in span AB .
(20 marks)

