TECHNICAL UNIVERSITY OF MOMBASA

A Centre of Excellence

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR THE SECOND SEMESTER IN THE THIRD
YEAR OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE/ BACHELOR OF SCIENCE IN STATISTICS AND COMPUTER

MAY 2016 SERIES EXAMINATION
UNIT CODE: AMA 4319
UNIT TITLE: TEST OF HYPOTHESIS
TIME ALLOWED: 2HOURS

INSTRUCTIONTO CANDIDATES:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

QUESTION ONE (30 MARKS)

1. a) Define the following terms as used in hypothesis testing
i. Type I error
ii. Level of significance
iii. Test statistic
iv. P-value
b) It is suspected that a coin is no balanced (not fair). Let p be the probability of getting a head. To test $H_{0}: P=0.5$ against the alternative hypothesis $H_{1}: P>0.5$, a coin is tossed 15 times. Let Y equal the number of times a head is observed in 15 tosses of this coin. Assume the rejection region to be $\{Y \geq 10\}$. Find:
i. the probability of Type I error
ii. the probability of Type II error when $P=0.7$
iii. the rejection region of the form $\{Y \geq K\}$ for $\alpha=0.01$
c) Consider a random sample chosen from a normal population with $\sigma=3.1$ being its true standard deviation. Determine how large a sample size should be for testing $H_{0}: \mu=5$ against $H_{1}: \mu=$ 5.5 , in order that $\alpha=0.01$ and $\beta=0.05$
d) Suppose we want to test the null hypothesis that the mean μ of normal population with variance $\sigma^{2}=1$ if μ_{0} is against an alternative μ_{1} where $\mu_{1}>\mu_{0}$. Find the value of K such that $\bar{X}>k$ provides a critical region of size $\alpha=0.05$ for a sample of size n.

QUESTION TWO (20 MARKS)

a) Define a rejection region of a test.
b) Distinguish between the following concepts as used in hypothesis testing
i. a one tailed test and a two tailed test.
ii. a most powerful test and a uniformly most powerful test .
c) The management of a local health club claims that its members lose on the average 15 pounds or more within the first 3 months after joining the club. To check this claim, a consumer agency took a random sample of 45 members of this health club and found that they lost an average of 13.8 pounds within the first 3 months of membership, with a sample standard deviation of 4.2 pounds.
i. Find the p - value of this test .
ii. Based on the p -value in (i) would you reject the null hypothesis at $\alpha=0.01$?

QUESTION THREE (20 MARKS)

a) State the generalized likelihood ratio test
b) Let $X_{1}, X_{2}, \ldots \ldots X_{n}$ be a random sample from an $N\left(\mu, \sigma^{2}\right)$. Assume that σ^{2} is unknown. We wish to test, at level $\alpha, H_{0}: \mu=\mu_{0}$ vs. $H_{1}: \mu \neq \mu_{0}$. Find an appropriate likelihood ratio test.
(16 marks)

QUESTION FOUR (20 MARKS)

a) Let $X_{1}, X_{2}, \ldots \ldots \ldots \ldots \ldots, X_{n}$ be a random sample from a normal distribution with a known mean μ and variance $\sigma^{2}=1$.Test the hypothesis that :

$$
H_{0}: \mu=\mu_{0} \text { against } H_{1}: \mu>\mu_{0}
$$

(10 marks)
b) Suppose X is a random sample from a normal population with mean μ and variance 16. Taking a sample of size $\mathrm{n}=16$ find the most powerful test with significance level $\alpha=0.05$,test the hypothesis $H_{0}: \mu=10$ ahainst $H_{1}: \mu=15$.

QUESTION FIVE (20 MARKS)

a) Let $X_{1}, X_{2}, \ldots \ldots \ldots . . . X_{n}$ be a random sample from a normal distribution unknown mean μ. Test the hypothesis $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ against $H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$.
b) In a random sample of 19 babies of a certain age, the standard deviation of their weights was 2.5 kg .

Test the hypothesis at $\alpha=0.01$ that

$$
H_{0}: \sigma=3 \text { against } H_{1}: \sigma \neq 3
$$

