

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MEDICAL SCIENCES

UNIVERSITY EXAMINATION FOR:

BMLS

ACH 4101 : FUNDAMENTALS OF INORGANIC CHEMISTRY PAPER II

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME: 2 HOURS

DATE: 3 May 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of Choose No questions. Attempt Choose instruction. **Do not write on the question paper.**

Question ONE

(a) Differentiate between;				
i.	Molarity and concentration	[2mks]		
ii.	Stoichiometric point and neutralization point	[2mks]		
(b) Calculate the pH of a buffer solution prepared by reacting 10 cm ³ of 0.05M sodium hydroxide with 10				
$cm^3 o$	f 0.1M acetic acid [CH ₃ COOH]	[4mks]		
(c) State two reasons that lead to the formulation of Schrödinger wave equation [2m]				
(d) The mass number of manganese atom is 55 and has total 30 protons.				
i.	Write down the electronic configuration of Mn atom	[2mks]		
ii.	Determine the four quantum numbers for an electron in the 3d orbital in Mn atom.			
		[5mks]		
(e) State the mathematical expression of Heisen berg's uncertainty principles and explain all terms used.				
		[3mks]		

(f) According to Bohr's theory of hydrogen atom, the velocity of an electron in the first orbital is 2.18×10^6 m s⁻¹. If the uncertainty in position of the electron is 5 pm, determine the uncertainty in velocity **[4mks]**

(g) By	y the use of examples differentiate between qualitative and quantitative techniques in c	chemical
an	alysis	[4mks]
(h) Ex	xplain how you can confirm the presence of Na ⁺ ions in urine	[2mks]

Question TWO

(a) Explain the meaning of the following terms;

i.	Resonance	[2mk]

- ii. Hybridization [2mk]
- (b) Draw and calculate the formal charge for the stable Lewis structure of SO_4^{2-} ion [6mks]
- (c) Using valence bond theory, predict the type of hybridization present in SBr₆ and PBr₅, hence predict the possible shapes of the structures. [10mks]

Question THREE

- (a) What is meant by the terms; solubility product? [2mks]
 (b) The solubility of lead chromate (PbCrO₄) is 4.5 × 10 ⁻⁵ g/L. Calculate the solubility and solubility product of this salt in 0.001 of Pb(NO₃)₂ [6mks]
 (c) Calculate the pH of 2 g NaOH present in 250 cm³ of solution [4mks]
 (d) The subshup content of a steel completie determined by converting it to U.S. one cheerbing the U.S.
- (d) The sulphur content of a steel sample is determined by converting it to H₂S gas, absorbing the H₂S in 10.0 mL of 0.050 M I₂, and then back titrating the excess I₂ with 0.0020 M Na₂S₂O₃. If 2.6 mL Na₂S₂O₃ is required for titration. Calculate the mass of S present in the sample in milligrams

[8mks]

$$H_2S + I_2 \rightarrow S + 2I^- + 2H^+$$

Question FOUR

 (a) Iron (II) sulphate is oxidized in presence of 2M H₂SO₄ to iron (III) sulphate by potassium permanganate. Write down;

i.	Half equations for the redox reaction.	[2mks]
ii.	The overall equation	[2mks]
(b) State	two failures of Bohr's atomic model	[2mks]
(c) State	the Hund's rule	[2mks]

- (d) Write down the abbreviated electronic configuration for the following chemical species;
 - i. Mn
 - ii. Cu
 - iii. Cr
 - iv. K

vi.

v. Mg

[5mks]

(e) Classify the above elements in question 5 (d) above into their respective blocks in the periodic table

[3mks]

Cl

Explain how radiochemistry has been applied in medicine

Question FIVE

(a) What is meant by the term quantum?	[1mk]
(b) State a mathematical expression obtaining energy of a quantum, hence define all the term	ns used
	[3mks]
(c) Determine the wave length of a photon in nanometers emitted during a transition from n	$_{i} = 5$ to $n_{f} = 2$
state in hydrogen atom.	[6mks]
(d) By the use of examples differentiate between;	
	[7.1.1
(1) Dipole-dipole force and Hydrogen bonding	[5mks]
(ii) Van deer Waal forces and London dispersion forces	[5mks]