

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF MATHEMATICS AND COMPUTER SCIENCE

AMA 4323: ORDINARY DIFFERENTIAL EQUATIONS II

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: 2016

PAPER A

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 5 questions. Question one is compulsory. Answer any other two questions **Do not write on the question paper.**

QUESTION ONE (COMPULSORY)

- a) Obtain the general solution to the following homogeneous linear system
 - $x'_1 = x_2$ $x'_2 = 3x_2 - 2x_1$ (5 marks)
- b) Find a solution of the initial Value problem $\frac{dy}{dx} = x^2$, $x_0 = 2$, $y_0 = 1$ using the uniqueness and existence theorem (5 marks)

c) Reduce the fourth order equation to first order systems

$$\frac{d^4y}{dx^4} - 5\frac{d^3y}{dx^3} + 7\frac{d^2y}{dx^2} + 9\frac{dy}{dx} - 6y = e^x$$
(5 marks)

d) Solve
$$\frac{d^3y}{dx^3} = xe^x$$
 (5 marks)

e) Solve
$$x^2 y \frac{d^2 y}{dx^2} + \left(x \frac{dy}{dx} - y^2\right) = 0$$
 (5 marks)

f) Locate and classify the singular points of the equation

$$(x^{4} - 2x^{3} + x^{2})\frac{d^{2}y}{dx^{2}} + 2(x - 1)\frac{dy}{dx} + x^{2}y = 0$$
 (5 marks)

QUESTION TWO

- a) Consider a first order vector equation X'(t) = AX(t) + B(t) where A is an $n \times n$ matrix of real numbers, X(t), B(t) are column vectors. Obtain the characteristic polynomial, characteristic equation and Eigen values of matrix A. (12 marks)
- b) Solve $zydx = zxdy + y^2dz$ (8 marks)

QUESTION THREE

- a) Find the two independent series solutions of the Bessel's equation $x^2y'' + xy' + (x^2 - 1)y = 0$ (14 marks)
- b) Solve the first order system

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -2x + 3y \tag{6 marks}$$

QUESTION FOUR

a) Solve the system
$$X' = AX$$
 where $A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 3 \\ 0 & 3 & 1 \end{pmatrix}$ (13 marks)

b) Obtain the roots of the indicial equation of
$$9x^2y'' + (x+2)y = 0$$
 (7 marks)

QUESTION FIVE

a) Solve the system of linear equations

$$x'(t) = 3x(t) - 4y(t)$$

$$y'(t) = 4x(t) - 7y(t)$$
(12 marks)

b) Show the convergence of the initial value problem

$$\frac{dy}{dx} = y;$$
 $x_0 = 0, y_0 = 1$ (8 marks)