

### TECHNICAL UNIVERSITY OF MOMBASA

### FACULTY OF APPLIED AND HEALTH SCIENCE DEPARTMENT OF MATHEMATICS AND PHYSICS

## UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE. AMA 4326: FLUID MECHANICS II

END OF SEMESTER EXAMINATION: MAY 2016 - SERIES

TIME: 2 HOURS

### **Instructions to Candidates**

You should have the following to do this examination:

-Answer Booklet, examination pass and student ID

Do not write on the question paper.

Answer question one and any other two

### Question one: 30 marks (Compulsory)

a) Briefly describe the following standard conformal transformations:

|    | i)                                                                                  | Inversion   | 1 mark |  |  |
|----|-------------------------------------------------------------------------------------|-------------|--------|--|--|
|    | ii)                                                                                 | Enlargement | 1 mark |  |  |
| b) | ) Prove that $w = \phi + i\psi$ is an analytic function.                            |             |        |  |  |
| c) | ) Two parallel plates kept 100mm apart have laminar flow of oil between them with a |             |        |  |  |
|    | maximum velocity of 1.5m/s and viscosity of oil 2.45Ns/m <sup>2</sup> .             |             |        |  |  |
|    | Calculate: i) The discharge per metre width.                                        |             |        |  |  |
|    | ii) The shear stress at the plates.                                                 |             |        |  |  |

d) Find a relevant stream function for a set of velocity components  $u = \frac{-cx}{y}$  and  $v = c \ln xy$  to obtain a steady incompressible flow. 6 marks

f) What is the irrotational velocity field associated with the potential

$$\phi = 3x^2 - 3x + 3y^2 + 16t^2 + 12zt$$
. Does the flow field satisfy the incompressible continuity equation? 5 marks

g) Prove that the transformation  $w = \frac{1}{z}$  maps the circle  $x^2 + y^2 + 2gx + 2fy + c = 0$  in the Z plane onto a circle in the w plane and maps circles in the Z plane through the origin onto a straight line in the w-plane. 5 marks

### **Question TWO (20 marks)**

- a) Fluid is in laminar motion between two parallel plates under the action of motion on one of the plates and also under the presence of a pressure gradient in such a way that the net forward discharge across any section is zero:
- i) Find out the point where minimum velocity occurs and its magnitude. 7 marks
- ii) Draw the velocity distribution profile (sketch graph) across a section of the parallel plates.

# b) The velocity components in a fluid flow are given by U = 2xy and $V = a^2 + x^2 - y^2$ i) Show that the flow is possible. 2 marks ii) Derive the relative stream function. 4 marks

c) If streamlines are represented by 
$$\psi = x^2 + y^2$$
 determine the velocity and its direction at (3, 4)

5 marks

2 marks

3 marks

#### **Question THREE (20 marks)**

a) Discuss the flow pattern due to a line source at the origin of a complex potential function.

4 marks

- b) In a pipe of 300mm diameter the maximum velocity of flow is found to be 2m/s, if the flow in the circular pipe is laminar. Find :
  - i) The average velocity and the radius at which it occurs. 5 marks

|    | ii)                      | The velocity at 50mm from the wall of the pipe.                                      | 2 marks |  |  |  |  |
|----|--------------------------|--------------------------------------------------------------------------------------|---------|--|--|--|--|
| c) | Consider                 | a conformal mapping $w = \sqrt{z}$ , show that the curve $ z - 1  = 1$ transforms to |         |  |  |  |  |
|    | $\rho^2 = 2cc$           | s $2\phi$ where $w = \rho e^{i\phi}$ in the <i>w</i> - plane.                        | 6 marks |  |  |  |  |
| d) | Determin                 | he a relevant stream function to a set of velocity components of steady              |         |  |  |  |  |
|    | incompre                 | ssible flow if $u=2cx$ and $v=-2cy$ .                                                | 3 marks |  |  |  |  |
| Qı | Question FOUR (20 marks) |                                                                                      |         |  |  |  |  |

| a) | Define | the | follov | wing | terms as | used | in | fluid | mechan | ics: |
|----|--------|-----|--------|------|----------|------|----|-------|--------|------|
|----|--------|-----|--------|------|----------|------|----|-------|--------|------|

| i) | Incompressible flow. | 1 mark |
|----|----------------------|--------|
|----|----------------------|--------|

- ii) Equipotential line. 1 mark
- b) Discuss the flow due to a uniform line doublet at point O of strength  $\mu$  per unit length if its axis is along the x- axis. 7 marks
- c) A lubricating oil of viscosity 1 poise and specific gravity 0.9 is pumped through a 30mm diameter pipe, if the pressure drop per metre length of pipe is 20KN/m<sup>2</sup>. Determine
  - i) The mass flow rate in kg/min. 4 marks
  - ii) Shear stress at the pipe wall. 2 marks
  - iii) The Reynolds number for the flow. 2 marks

d) Show whether the function 
$$\psi = A(x^2 - y^2)$$
 represents a possible irrotational flow. 3 marks

### **Question FIVE (20 marks)**

a) The velocity distribution in a pipe is given by  $\frac{U}{U \max} = 1 - \left(\frac{r}{R}\right)^n$  where  $U_{\max}$  is the maximum velocity at the centre of a pipe, U is the velocity at a distance r from the centre and R is the pipe radius. Obtain an expression for mean velocity in terms of  $U_{\max}$  and n. 5 marks

# b) The flow field of a fluid is given by $V = xyi + 2yzj - (yz + z^2)k$ : i) Show that it represents a possible 3 dimensional steady incompressible continuous flow.

2 marks

ii) Is this flow rotational or irrotational. 2 marks

- iii) If irrotational determine at point A (2, 4, 6) the value of angular velocity and vorticity.4 marks
- b) If there is a line source of strength m at a point Z and a line source of equal strength at the mirror image of z<sub>1</sub> at the line x=0. Prove that there is no fluid motion across the mirror x=0.
  7 marks

### THE END