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- Mathematical tables 
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This paper consists of FIVE questions 

Answer question ONE (COMPULSORY) and any other TWO questions 

Maximum marks for each part of a question are as shown 

 

QUESTION ONE (30 MARKS) 

 

 (a)       Define the following: 

(i) A stochastic process                                                                                                          (2 marks) 

 

(ii) A Bernoulli process                                                                                                           (2 marks) 

 

 



(b)  Let Y have a geometric distribution given by 

𝑃(𝑌 = 𝑘) = {
𝑞𝑘𝑝;    𝑘 = 0,1,2,3,… . .
0  ;     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 

Find (i)   the probability generating function of Y                                                                                     (4 marks) 

 

         (ii)   the mean and variance of Y                                                                                                         (6 marks) 

 

(c) . Let  {𝑋𝑛 ∶ 𝑛 ≥ 0} be a Markov chain with three states 0,1,2 and transition probability matrix  

(
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 And the initial probability distribution  𝑃(𝑋0 = 𝑖) =

{
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 Find : 

(i)  𝑃(𝑋2 = 2 ,   𝑋1 = 1 𝑋0 = 2⁄ )                                                                                                (3marks) 

 

(ii) 𝑃 (𝑋1 = 1 𝑋0 = 2⁄ )                                                                                                                  (1 mark) 

 

 

(iii) 𝑃 (𝑋2 = 2  𝑋1 = 1⁄ )                                                                                                                 (1 mark) 

 

(iv) 𝑃 (𝑋3 = 1 , 𝑋2 = 2 , 𝑋1 = 1 , 𝑋0 = 2)                                                                                 (3 marks) 

 



 

 

(d).  The joint distribution of two random variables X and Y is given by:  

𝑃𝑗𝑘 = 𝑃 {𝑋 = 𝑗 , 𝑌 = 𝑘} = {
𝑞𝑗+𝑘𝑝2 , 𝑗 = 0,1,2,….  , 𝑘 = 0,1,2, . ., 𝑝 + 𝑞 = 1

0                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Obtain the: 

(i).  bivariate p.g.f of X and Y                                                                                                                        (4 marks) 

 

(ii). P.g.f of X                                                                                                                                                    (2 marks) 

 

(iii). P.g.f of  X+Y                                                                                                                                              (2 marks) 

 

QUESTION TWO (20 MARKS) 

(a) Define the following terms : 

 

(i) Irreducible Markov chain                                                                                                 (2 marks) 

 

(ii) Persistent state                                                                                                                  (2 marks) 

 

 

(iii) A periodic state                                                                                                                   (1 mark) 

 

(iv) Ergodic state                                                                                                                       (1 mark) 

                                                                                                                                              

 

(b).  A markov  chain with state space {𝐸1, 𝐸2, 𝐸3} has the following probability transition matrix 

(

 
 
 
0

1

2

1

2
1

2
0

1

2
1

2

1

2
0)

 
 
 

 



Classify the states of the process.                                                                                                             (14 marks) 

 

QUESTION THREE (20 MARKS) 

Consider a population whose size at time t is Z(t) and let the probability that the population size is n be 

denoted by  𝑃𝑛(𝑡) = 𝑃{𝑍(𝑡) = 𝑛}  with 𝑃1(0) = 1 𝑎𝑛𝑑 𝑃𝑛(0) = 0 , 𝑛 ≠ 1 . Further let : 

 

(i)        The chance that an individual produces a new member in time t interval Δt be Δt where 

 is some constant be n. 

 

(ii) The chance of an individual producing more than one member be 0(Δt) (i.e negligible). 

(a) Show that    𝑃𝑛(𝑡) =  𝑒
−𝑡{1 − 𝑒−𝑡}

𝑛−1
  , 𝑛 ≠ 1 

 

(b) Find the second raw moment of the process 

                                                                                                                                    (20 marks) 

 

QUESTION FOUR (20 MARKS) 

 

(a) Explain the following terms: 

(i) A strictly stationary stochastic process                                                                         (2 marks) 

 

(ii) A covariance stationary process                                                                                     (2 marks) 

 

 

(iii) An evolutionary process                                                                                                   (2 marks) 

                                                                                                                                                                    

 b)         (i) Write down the differential-difference equations for the Polya process. Hence obtain the 

probability generating function given that  𝑃𝑛(0) = 1  𝑤ℎ𝑒𝑛 𝑛 = 0 𝑎𝑛𝑑 𝑃𝑛(0) = 0 𝑤ℎ𝑒𝑛 𝑛 ≠ 0 

               (ii) Show that the Polya process is not covariance stationary. 

                                                                                                                                        (14 marks) 

 

 



 

QUESTION FIVE  (20 MARKS) 

 

Consider the difference-differential equations for the Poisson process given by  

 

𝑃′𝑛(𝑡) =  {
−𝑃𝑛(𝑡) + 𝑃𝑛−1(𝑡)  ∶   𝑛 ≥ 1

−𝑃0(𝑡)              ∶   𝑛 = 0
 

 

With initial conditions  𝑃0(0) = 1 𝑤ℎ𝑒𝑛 𝑛 = 0 𝑎𝑛𝑑 𝑃𝑛(0) = 0 𝑤ℎ𝑒𝑛 𝑛 ≠ 0 

 

(i) Find the solution of the equation. 

 

(ii) Use Feller’s method to find the mean and variance of the process. 

                                                                                                                                       (20 marks) 


