THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
Faculty of Engineering \& Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

CERTIFICATE IN ARCHITECTURE

SEMESTER I EXAMINATIONS

APRIL/MAY 2010 SERIES

GEOMETRY I

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

- Answer booklet
- Mathematical tables/Calculator

This paper consists of FIVE Questions Answer question ONE and any other TWO Questions. Maximum marks for each part of a question are as shown.

Question ONE

(a). A man north of a tower measures the angle of elevation to the top as 18°. He then moves 108 m on a bearing of $\mathrm{N} 65^{\circ} \mathrm{E}$ to another station from which angle of elevation is 25°. Determine:-
(i). height of the tower
(ii). angle of elevation at a distance 180 m from the tower.
(Assume a level ground)
(17 Marks)
(b). Using the figure below,

Determine;
(i). $\angle A C B$
(ii). $\angle A B C$
(iii). C
(8 Marks)
(c). Prove that, $\frac{1+\tan ^{2} A}{1-\tan ^{2} A}=\operatorname{Sec} 2 A$
(5 Marks)

Question TWO

(a). Prove the following identities:-
(i). $\frac{\sin ^{3} A+\cos ^{3} A}{\sin A+\cos A}+\frac{\sin ^{3} A-\cos ^{3} A}{\sin A-\cos A}=2$
(ii). $\quad \cos (\pi / 3+\theta)-\cos (\pi / 3-\theta)=-\sqrt{3} \sin \theta$
(7 Marks)
(b). (i). Without using tables or calculators, find $\tan (A-B)$.

Given $\sin A=2 / 5$ and $\cos B=6 / 13$.
(6 Marks)
(ii). An architect sitting in his office 14 m from the ground observes a building at an angle of elevation of 12°. Distance between the two buildings is 110 m . Determine height of the building.
(7 Marks)

Question THREE

(a). Given, $f(t)=4 \sin \left(t+30^{\circ}\right)$. Draw a graph of $f(t), 0^{\circ} \leq t \leq 360^{\circ}$. Determine:
(i). Amplitude
(ii). Period
(iii). Frequency
(12 Marks)
(b). A ladder 35.4 ft long is leaning against an embarkment inclined 62.5° to the horizontal. If the bottom of the ladder is 10.2 ft from the embarkement, what is the distance from the top of the ladder down the embarkement to the ground?
(8 Marks)

Question FOUR

(a). A picture w feet high is placed on a wall with its base, Z feet above the level of the eye of an observer. If the observer is (x) feet from the wall and θ is the angle subtended at observer's eye by the picture. Show that:
$\theta=\cot ^{-1}\left(\frac{x}{\omega+Z}\right)-\cot ^{-1}\left(\frac{x}{Z}\right)$
(6 Marks)
(b). Draw one cycle of the function defined by $y=\operatorname{Cos} \frac{2}{3} t$.
(i.e. $0^{\circ} \leq x \leq 360^{\circ}$). Hence, evaluate:-
(i). Amplitude
(ii). Period of the function
(10 Marks)

Question FIVE

(a). (i). Solve the equation,

$$
2 \sin ^{2} t-\cos t-1=0 \quad, \quad 0 \leq t \leq 2 \pi
$$

(7½ Marks)
(ii). Find solution of the equation;

$$
2 \sin 3 \theta \cos \theta=0 \quad \text { if } \quad 0^{\circ} \leq \theta \leq 360^{\circ}
$$

(7½ Marks)
(b). Obtain an identity for $\tan 4 \theta$ in terms of $\tan \theta$.
(5 Marks)

