

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED & HEALTH SCIENCES

MATHEMATICS & PHYSICS DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS AND BACHELOR OF TECHNOLOGY IN

ENVIRONMENTAL PHYSICS & RENEWABLE ENERGY

APS 4202: Electricity & magnetism II

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 4 questions. **Do not write on the question paper. Answer question ONE** (compulsory) and any other two questions. DATA: Permeability of vacuum/free space, $\mu_0 = 4\pi \times 10^{-7} Hm^{-1}$ Permittivity of vacuum/ free space, $\varepsilon_0 = 8.85 \times 10^{-12} Fm^{-1}$ Electron charge, $q = 1.602 \times 10^{-19} C$ Mass of electron, $m_e = 9.11 \times 10^{-31} kg$

Proton mass, = $m_p = 1.67 \times 10^{-27} kg$

Question ONE

- (a) An air core toroid of area A and radius R has N turns and carries a current I in each turn.
- (i) Give the magnetic field intensity $\overrightarrow{B_o}$ for the toroid (2 marks)
- (ii) The same winding is placed on an iron-ring of the same area and radius. The effect of the iron ring is noted to be identical to that of the same air-core toroid with fine winding of N_m turns

where $N_m > N$. Derive the magnetic field density $\overrightarrow{B_m}$ in the air-core toroid of fine winding.

(3 marks)

(iii) The relative permeability of the iron ring is μ_r , show that:

©Technical University of Mombasa

I. The total magnetic field density for an iron core toroid is given by $\vec{B_0} = \mu_0(\vec{H} + \vec{M})$

(2 marks) II. $\nabla x \vec{B} = \mu_0 \left(\vec{J} + \vec{J^1} \right)$, and define the parameter within the brackets.(3 marks) III. $\mu_r = 1 + \frac{\vec{M}}{\vec{H}}$ (3 marks)

(b) Explain clearly the difference between antiferri magnetic materials and ferromagnetic materials giving examples in each case. (4 marks)

- (c) (i) What is an inductor? (1 mark) (ii) Show that if along solenoid is bent into a circle and closed on itself the inductance of toroid formed is given by $L = \mu \frac{N^2 r^2}{2R}$ where *r* is the radius of the winding of many turns, *R* is the radius of the toroid and *N* is the number of the turns in the toroid. (5 marks)
- (d) Find the reluctance and permeance between the ends of the rectangular block of iron in figure 1. Assume \vec{B} is uniform and normal to the ends and $\mu_1 = 500\mu_0$ (5 marks)

(e) Compute the final velocity of an election that accelerates from rest through a potential difference of $_{1V}$ (2 marks)

Question TWO

Define the terms:

(i)	Magnetic field intensity	(1 mark)
(ii)	Magnetic flux linkage	(1 mark)
(iii)	Inductance	(1 mark)

(b) Compute the inductance of a solenoid of 2000 turns wound uniformly over a length on a cylindrical paper tube 4cm in diameter. Assume air medium ($\mu = \mu_0$) (5 marks)

(c) (i) A solenoid consist of *N* turns of fine wire carrying a current 1. The coil has length *L* and radius *R*. Show that the flux \vec{B} at the centre of the solenoid is given by $\vec{B} = \frac{\mu N I}{\sqrt{4R^2 + L^2}}$ (5 marks)

- (ii) Hence simplify the value of \vec{B} for L >> R and write down the expression for the inductance of the solenoid. (3 marks)
- (d) A very long solenoid coil of radius r is bent into a circle to from a toroid of radius R. If R >> r then determine:
 - (i) The flux linkage of the toroid (2 marks)
 (ii) The inductance of the toroid (2 marks)

Question THREE

- (a) (i) State Faraday's law and show the e.m.f ε induced in a stationary due to a change in a magnetic flux through the loop is given by $\xi = -\int \frac{\partial B}{\partial t} ds$ (6 marks)
 - (ii) The loop in 3a (i) above is now made to move in the time changing \vec{B} field. Show that the e.m.f induced becomes $\xi = \oint (Vx\vec{B})dL \int \frac{\partial B}{\partial t}ds$ (4 marks)
- (b) The figure below shows a conductor PQ that slides over a rectangular loop conductor whose plane is perpendicular to a \vec{B} field that is out of paper. The sliding conductor moves with a velocity V. The field \vec{B} is uniform over the loop area but varies harmonically with time as given by $B = B_0 Cos \omega t$.

Determine the direction of the induced current and the total e.m.f ε induced in the loop.

(6 Marks)

(c) State Maxwell's equations in free space

(4 marks)

Question FOUR

- (a) A toroid of cross sectional area A and length L, has two coils inter wound such that the number of turns in the primary is N_1 and that in the secondary is N_2 . The current flowing in the primary is 1_1 and the permeability of the medium in the toroid is μ . There is no electrical connection between the two coils. Show that the mutual inductance is given by $\mu = \mu \frac{N_1 N_2 A}{L}$ (6 marks)
- (b) A magnetic field \vec{B} is incident on a plane boundary between two media of permeability μ_1 and μ_2 as shown in figure 1 below. Assume that the media are isotropic with \vec{B} and \vec{H} in the same direction. Show that (4 marks)

DIAGRAM

(i)	Homogeneity	(1 mark)
(ii)	Linearity	(1 mark)
(i)	Isotropy	(1 mark)

(d) The magnitude of magnetic field intensity \vec{H} at a radius 1m from along linear conductor is $4Am^{-1}$. Determine the current in the wire. (3 marks)

(e)	(i)	What is a transmission line	(1 mark)
	(ii)	Name three classes of transmission lines	(3 marks)

©Technical University of Mombasa