

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

University Examination 2010

THIRD YEAR/FIRST SEMESTER EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2303: SOIL MECHANICS I

SERIES: APRIL/MAY 2010

TIME: 2 HOURS

Instructions:

Answer Question **ONE** and any other **TWO** questions. Check that you have TWO semi-log graph papers and ONE Cartesian graph paper.

QUESTION ONE (Compulsory)

(a)	Briefly highlight FOUR field identification tests that differentiate sil from clay	t (4 marks)
(b)	What are the TWO distinct categories of soils that are important to a civil engineer?	(1 mark)
(c)	Define the terms porosity, void ratio and degree of saturation for a soil mass.	(3 marks)
(d)	State Stoke's Law. In using the Stoke's Law in determining particle size distribution by Hydrometer and Pipette analysis, which assum are taken into considerations?	e ptions (5 marks)
(e)	What do you understand by Atterberg's Limits? Highlight on the T Atterberg's Limits.	HREE (4 marks)
(f)	Why is soil classification important? List any FOUR systems of soi classification.	l (3 marks)
(g)	Briefly discuss the variables on which permeability of a given soil depends.	(4 amrks)

- (h) State the properties of a flow net and its application. (3 marks)
- (i) What is soil compaction? State the factors affecting soil compaction.

(3 marks)

(2 marks)

QUESTION TWO

- (a) A soil sample of moist silty soil has a volume of 15cm3 and weighs 28g. After complete drying out in oven, its weight is 24g. The unit weight of solid constituents is 2.7g/cm3. Calculate:-
 - (i)Void ratio(2 marks)(ii)Porosity(2 marks)(iii)Water Content(2 marks)
 - (iv) Degree of saturation
- (b) Results obtained in consistency limits test for two soils are given below.

So	il X	S	bil Y Water content %		
No. of blows	Water content %	No. of blows	Water content %		
4	48	7	61		
10	43	15	59		
20	40	25	58		
40	36	40	57		
$P_{\rm w} = 20\%$		P _w = 20%			
$W_n = 42\%$		W _n = 58%			

(i)	Determine plasticity index for the soils	(1 mark)
(ii)	Which soil is a better foundation material?	(2 marks)
(iii)	Comment on the strength of the soils	(2 marks)
(iv)	Comment on the strength of the soils at plastic limit	(2 marks)
(v)	Do these soil materials have organic matter? Comment	(1 mark)

QUESTION THREE

- (a) Write briefly on 'A. Casagrande's Soil Classification System'. (5 marks)
- (b) In determination of particle size distribution, the following data was obtained.

Sieve size, mm	9.40	4.75	2.00	0.42	0.25	0.105	0.074	0.05	0.005	0.001
% finer	100	90	72	67	56	44	24	21	11	4

(i) Plot a grain size distribution curve.

(5 marks)

(ii) Determine the co-efficient of uniformity and curvature. (4 marks)

- In a test, 10g of fine grained soil of specific gravity of 2.70 was dispersed in 500cm³ of water in a jar (viscosity =- 1.1 x 10-5 g.s/cm²). A sample of volume 10cm³ was taken by means of pipette at a depth of 10cm, 46 minutes after sedimentation. The sample after oven drying, weighed 0.026g. Calculate:-
 - (i) The largest particle remaining in suspension at 10cm depth. (3 marks)
 - (ii) The percentage finer than this size in the original soil. (3 marks)

QUESTION FOUR

- (a) Describe a falling head permeameter test and show pertinent derivations for the determination of co-efficient of permeability. (10 marks)
- (b) A sample of soil 8cm in diameter and 4cm thick is tested in a falling head permeameter. The elevation of water in the standpipe above the tail water level was observed to drop from 42cm to 32cm in 5 minutes, 42 seconds. The inside diameter of standpipe is 0.2cm. Compute the co-efficient of permeability and classify the soil. (5 marks)
- (c) A concrete dam, 150m long has a sheet pile that extends half way down a permeable stratum. The head of the dam is 10cm. From a flow net made up square figures, there are 5 seepage paths and 16 equipotentials drops. The co-efficient of permeability is 1x10⁻⁴ cm/sec. What will be the quantity of seepage in m/day? (5 marks)

QUESTION FIVE

- (a) Develop a relationship for void ratio in terms of specific gravity and water content for a saturated soil (3 marks)
- (b) Describe the Standard Proctor Compaction Test for a soil sample. (5 marks)
- (c) The following data were recorded in Standard Proctor Test for a soil sample picked from a highway embankment. The specific gravity of the soil is 2.75.

Water content %	11.4	12.8	15.8	18.6	19.8
Wet density g/cm ³	1.9	1.96	2.07	2.05	2.03

- (i) Plot the dry density versus moisture content curve and determine the optimum moisture content and maximum dry density (8 marks)
- (ii) At this optimum moisture content and maximum dry density, calculate the void ration and degree of saturation. Make a comment. (4 marks)