TECHNICAL UNIVERSITY OF MOMBASA
FACULTY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERINGUNIVERSITY EXAMINATION FOR:
THE DEGREE IN BACHELOR OF SCINCE IN MECHANICAL ENGINEERING
EMG 2307 :FLUID MECHANICS III
END OF SEMESTER EXAMINATION
SERIES: APRIL 2016

TIME: 2 hours
DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.

Question ONE

a) Explain the following terms
i. Path line
ii. Stream line
iii. Stream line
iv. Stream tube
b) A fluid flow field is given by $V=(3 x+2 y) i+\left(2 z+3 x^{2}\right) j+(2 t-3 z) k$ Determine
i. The velocity components u, v, w at any point in the field.
ii. The speed at point $(1,1,1)$
iii. The speed at time $\mathrm{t}=2 \mathrm{~s}$ at point $0,0,2$) (6 marks)
c) For the following stream functions calculate velocity at point $(1,2)$

$$
\begin{aligned}
\text { i. } & \psi=3 x y \\
\text { ii. } & \psi=3 x^{2} y-y^{3}
\end{aligned}
$$

Question TWO

a) Explain compressible flow and incompressible flow
(4 marks)
b) Derive the expression for Bernoulli's equation when the process is isothermal
(6 marks)
c) A 120 mm diameter pipe reduces to 60 mm diameter through a sudden contraction. When it carries air at $25^{\circ} \mathrm{C}$ under isothermal condition, the absolute pressure observed in the two pipes just before and after the contraction are $480 \mathrm{kN} / \mathrm{m}^{2}$ and $384 \mathrm{KN} / \mathrm{m}^{2}$ respectively, calculate:
i. Densities at the sections.
ii. Velocities at the two sections
iii. Mass rate of flow through the pipe

Question THREE

a) Explain the following flows:
i. Forced vortex flow
ii. Free vortex flow
(6 marks)
b) An open cylinder of 15 cm diameter and 100 cm long contains water up to a height of 80 cm . Find the maximum speed at which the cylinder is to be rotated about its vertical axis so that no water spills. (7marks)
c) A cylindrical vessel 12 cm in diameter and 30 cm deep is filled with water upto the top. The vessel is open at the top. Find the quantity of liquid left in the vessel, when it is rotated about its vertical axis with a speed of 300 rpm .
(7 marks)

Question FOUR

a) Sketch the layout of hydroelectric power plant
(7 marks)
b) Explain the following terms related to efficiency of pelton wheel:
i. Mechanical efficiency
ii. Volumetric efficiency
iii. Overall efficiency (6 marks)
(c) A pelton wheel having a mean bucket diameter of 1.2 m is running at 1000 r.p.m. The net head on the pelton wheel is 840 m . If the side clearance angle is 15° and discharged through the nozzle is $0.12 \mathrm{~m}^{3} / \mathrm{s}$. Calculate:
(i) Power available at the nozzle
(ii) Hydraulic efficiency of the turbine
(7 marks)

Question FIVE

a) What is a pump?
b) Describe the principle and working of a reciprocating pump.
c) A single acting reciprocating pump running at $50 \mathrm{r} . \mathrm{p} . \mathrm{m}$. delivers $0.00736 \mathrm{~m} 3 / \mathrm{s}$ of water . The diameter of the piston is 200 mm and stroke length 300 mm . The suction and delivery heads are 3.5 and 11.5 respectively. Calculate.
i. Theoretical discharge
ii. Co-efficient of discharge.
iii. Power required to run the pump.
d) List the main components parts of a centrifugal pump and explain them briefly
(9 marks)
(11 marks)

