TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING EMG 2411:SOLID AND STRUCTURAL MECHANICS IV END OF SEMESTER EXAMINATION

SERIES: APRIL 2016
TIME: 2 HOURS
DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt any THREE questions.
Do not write on the question paper.

Question 1

Fig Q1 shows a two-celled tube with a cross-section whose dimensions are indicated in millimeters and $t_{1}=4 \mathrm{~mm}$, $t_{2}=6.2 \mathrm{~mm}$ and $t_{3}=2.8 \mathrm{~mm}$.

If a torque of magnitude $11.6 \mathrm{kN}-m$ is applied, calculate
(a) the stresses in all the walls
(b) the overall angle of twist per unit length

Torsional Modulus of Rigidity $G=80 \mathrm{GN} / \mathrm{m}^{2}$

Question 2

Fig Q2 shows a beam of length l fixed at the left-hand end and propped at the right-hand end, while supporting a centre-point load P.
(i) Calculate the reactions at the supports
(ii) Derive expressions for the deflection at a distance $l / 4$ and a distance $l / 2$ from the fixed end of the beam $E=$ Modulus of Elasticity of the beam material
$I=$ Second Moment of Area of beam cross-section about a horizontal axis through
Its centre of gravity.

Question 3

Fig Q3 shows the cross-section of a cantilever beam of length l made from a material of thickness t. The beam has a small slit along its whole length, the slit location being as shown in the figure. A vertical force P is applied at the free end of the beam. The line of action of force P is such that only bending (and no twisting) of the crosssection takes place.

Determine
(a) the Shear Stresses and sketch their distribution along the faces $A B, B C, C D$, and $D E$ of the cross-section.
(b) the position of the Shear Centre of the cross-section.

Question 4

(a) A strut of uniform cross-section is of length l and it is pinned at the ends. It carries an axial compressive load P as well as a laterally applied centre point load W.

Show that the maximum deflection is given by

$$
\delta=\frac{W}{2 n P} \tan \frac{n l}{2}-\frac{W l}{4 P}
$$

Where $n=\sqrt{\frac{P}{E I}}$ and I is the Second Moment of Area of the cross-section
(b) Derive an expression for the maximum compressive stress in the strut if one assumes the strut to be of solid cross-section with diameter a.

Question 5

A circular plate has diameter 600 mm and it is made from a material of thickness
0.018 mm . The plate is clamped around its periphery and it is subjected to a concentrated centre point load of magnitude 450 N .

Calculate the magnitude of the radial stress at the fixed end.
Modulus of Elasticity $E=200 \mathrm{GN} / \mathrm{m}^{2}$
Poisson's ratio $\quad v=0.3$
Assume that at any radius r, the Bending Moment in the radial direction per unit length of arc is given by

$$
M_{r}=-D\left[\frac{d^{2} w}{d r^{2}}+\frac{v}{r} \frac{d w}{d r}\right]
$$

And the Bending Moment in the circumferential direction per unit length of radius is given by

$$
M_{\theta}=-D\left[\frac{1}{r} \frac{d w}{d r}+v \frac{d^{2} w}{d r^{2}}\right]
$$

Also

$$
\frac{d}{d r}\left[\frac{1}{r} \frac{d}{d r}\left(r \frac{d w}{d r}\right)\right]=\frac{Q}{D}
$$

where Q is the Shear Force per unit length and

$$
D=\frac{E t^{3}}{12\left(1-v^{2}\right)}
$$

