

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED &HEALTH SCIENCES
MATHEMATICS & PHYSICS DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN ENVIRONMENTAL PHYSICS & RENEWABLE ENERGY

APS 4303: THEMAL PHYSICS II

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of 4 questions.

Do not write on the question paper. Answer question ONE (compulsory) and any other two questions.

SECTION A (30POINTS)

QUESTION 1

- (a) Explain the following terms
 - (i) Ensemble average

[3points]

(ii) Partition function

[3points]

(iii) Entropy [3points]

(b) (i) Consider a one-particle system of two states, one of energy o and one of energy ε . The particles are in thermal equilibrium with a reservoir at temperature τ . Compute the energy and heat capacity of the system as a function of then temperature τ . [7points] (ii) If we shift the zero energy and take the energies of the two states as $-\frac{1}{2}\varepsilon$ and

 $+\frac{1}{2}\varepsilon$, compute the partition function and heat capacity of the system and find what the heat capacity looks like in conventional temperature system. [7points]

(c) Consider a model system with N_{\uparrow} spins up and N_{\downarrow} spins down.Let $N=N_{\uparrow}+N_{\downarrow}$; the spin excess is $2s=N_{\uparrow}-N_{\downarrow}$. The entropy is given by (in Stirling's approximation)

$$\sigma(s) \approx -\left(\frac{1}{2}N + s\right)\log\left(\frac{1}{2} + \frac{s}{N}\right) - \left(\frac{1}{2}N - s\right)\log\left(\frac{1}{2} - \frac{s}{N}\right).$$

In a magnetic field B, what would be the free energy and what is the expression for the minimum energy? [7points]

SECTION B

QUESTION 2

(a) For a particle in a box the energy is given by

$$\varepsilon_n = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 \left(n_x^2 + n_y^2 + n_z^2\right)$$
, where the letters have their usual meanings.

- (i) Give the expression for the partition function for this system. [4points]
- (ii) What is the expression for the partition function if the spacing between adjacent energy is small in comparison with $\, au$. Use the formula,

$$\left(\int_{0}^{\infty} dn_{x} \exp\left(-\alpha^{2} n_{x}^{2}\right)\right)^{3} = \frac{\pi^{3/2}}{8\alpha^{3}}$$
 [6points]

(b) The partition function of an ideal of N identical particles is given by

$$Z_N = \frac{1}{N \downarrow} (n_Q V)^N$$
, where $n_Q = \left(\frac{M\tau}{2\pi\hbar^2}\right)$ and the letters have their usual

meanings.

- (i) Determine energy of the gas. [3points]
- (ii) Determine the pressure of the gas. [3points]
- Iiii) Determine the entropy of the system. [4points]

QUESTION 3

- (a) Give a brief description of the Debye model of heat capacity. [10points]
- (b) In the Debye model of heat capacity the total energy is given by

$$U = \int_{0}^{n_{D}} dnn \frac{\hbar \omega}{\exp(\hbar \omega / \tau) - 1}.$$

- (i) Determine the total energy in the low temperature limit. [5points]
- (ii) Determine the heat capacity C_v in the low temperature regime. [5points]

QUESTION 4

(a) Define the chemical potential of an ideal gas.

[4points]

(b) The free energy of a monatomic gas is given by

$$F = -\tau \left[\log Z_1 - \log N \right] \text{ where } Z_1 = n_Q V = \left(\frac{M\tau}{2\pi\hbar^2}\right)^{3/2} V$$

From this expression determine the chemical potential.

[6points]

(c) The differential of entropy is given by $d\sigma(U,V) = \left(\frac{\partial\sigma}{\partial U}\right)_V dU + \left(\frac{\partial\sigma}{\partial V}\right)_U dV$.

If denote the independent values of dU by $(\delta U)_n$ and dV by $(\delta V)_n$ the entropy change will be zero.

- (i) Determine the expression for the pressure in terms of τ, σ, V with U kept constant. [6points]
- (ii) From the expression for $d\sigma$ obtain the thermodynamic identities. [4points]