

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED & HEALTH SCIENCES

MATHEMATICS & PHYSICS DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

APS 4212: VECTOR ANALYSIS

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME: 2 HOURS

DATE: MAY 2016

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of 4 questions. Do not write on the question paper. Answer question ONE (compulsory) and any other two questions.

SECTION A (30 MARKS)

QUESTION 1

(a) (i) Prove that the divergence of the curl of a vector vanishes.	
(ii) Prove that the gradient operator is a vector operator.	[3points]
(b) (i) For any vector B whose components are given in three dimensional Cartesian	1
coordinates, compute $ abla XB$	[6points]
(ii) Show that $\nabla . (\nabla XB) = 0$	[4points]

(c) (i) Write down the expressions for the unit vectors in spherical coordinates, and find their

derivative with respect to each other.	[5points]
(ii) Prove that AXBXC = B(A.C) –C(A.B)	[5points]
(d) Construct any two 2x2 matrices and show that they dot commute.	[2points]

SECTION B

QUESTION 2 (20Points)

(a) (i) Given a 3X3 square matrix A =	find its transpose A and	
compute the product of the matrix and its transpose.		[7points]
(ii) Find the inverse of the matrix A = $\begin{bmatrix} 13\\21 \end{bmatrix}$		[5points]
(b) Given the two linear equations		

x+3y = 2 and 2x+y = 3, use matrix technique to solve for x and y.	[8points]
---	-----------

QUESTION 3 (20Points)

(a) (i) Explain what is meant by a vector space.	[2points]
(ii) Explain what is meant by a Hilbert space.	[3points]
(iii) Explain what is meant by a linear operator.	[3points]
(iv) Explain what is meant by linearly dependent set of vectors and a set of	
linearly independent vector.	[2points]
(b) (i) Given the following matrix,	

٨	[(2+3i)	(4-5i)
A =	=	(4i)

compute the Hermitian conjugate $A^{\scriptscriptstyle +}$	[4points]
(ii) Give an example of a unitary matrix and show that it, actually, is unitary.	[6points]

QUESTION 4 (20Points)

(a) If $\sigma\,$ is a closed surface which encloses a volume $\,\tau\,$, prove that

$$\oint_{\sigma} nd = 0$$
 [4points]

(b) Prove that
$$\iiint_{\tau} \nabla XAd\tau = \oiint_{\sigma} nXAd\sigma$$
 [8points]

[8points]

(c) Show that
$$\nabla X \nabla X A = \nabla \nabla A - \nabla^2 A$$