# TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied and Health Sciences

Department of Mathematics and Physics

# **UNIVERSITY EXAMINATION FOR:**

Bachelor of Medical Laboratory Science

**APS 4111: Introduction to physics** 

## END OF SEMESTER EXAMINATION

# SERIES: May 2016

## TIME: 2 Hours

### DATE:

#### **Instructions to Candidates**

You should have the following for this examination *-Answer Booklet, examination pass and student ID* This paper consists of five questions. Attempt Question One and any other two questions. **Do not write on the question paper.** 

#### Important constants

Acceleration due to gravity g=9.81 ms<sup>-2</sup> Permittivity of free space  $\varepsilon_0 = 8.85 \times 10^{-12} C^2 N^{-1} m^{-2}$ Acceleration due to gravity g=9.81 ms<sup>-2</sup>  $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 Fm^{-2}$ 

Electric charge  $e = 1.63 \times 10^{-19} C$ 

Specific latent heat of ice= $3.4 \times 10^5 \text{Jkg}^{-1}$ , specific latent heat of steam =  $2.3 \times 10^6 \text{JK}^{-1}$ 

Speed of sound in  $air=340 \text{ ms}^{-1}$ 

#### **Question One (30 Marks)**

a.

| Distin | iguish between                                              |           |
|--------|-------------------------------------------------------------|-----------|
| i.     | fundamental and derived units                               | (2 marks) |
| ii.    | precision and accuracy                                      | (2 marks) |
| iii.   | principle focus of a concave lens and that of a convex lens | (2 marks) |
| iv.    | a real and a virtual image                                  | (2 marks) |
| v.     | longitudinal and transverse waves                           | (2 marks) |
|        |                                                             |           |

- b. Find by dimensional analysis the correctness of the equations  $\frac{2s ut}{a} = t^2$  where a is the acceleration, *u* the initial velocity, *t* the time and *s* the displacement. (4 marks).
- c. Describe an experiment that you can perform to prove the existence of atmospheric pressure. (3 marks)
- d. A body initially at rest accelerates uniformly and reaches 20 m/s in 2 s. find:
  - i. the acceleration (2 marks)
  - ii. distance covered in this time (2 marks)
- e. Find the
  - i. effective resistance of two resistors  $R_1$  and  $R_2$  when connected in parallel

(3 marks)

ii. the effective capacitance for two capacitors  $C_1$  and  $C_2$  connected in series

(3 marks)

(3 marks)

- i. photoelectric effect
- ii. Compton scattering
- iii. pair production

f. Define the following terms

#### **Question Two (20 marks)**

- a. What are SI units? List the fundamental quantities under the SI system of units together with their respective units (4 marks)
- b. Derive the following equation of linear motions: (6 marks)
  - i.  $v^{2} = u^{2} + 2as$ ii.  $S = ut + \frac{1}{2}at^{2}$
- c. Name and describe the two types of errors. Cite an example in each case. (5 marks)
- d. Find the torque of the 10 N force about O in Figure 1 and Figure 2.







Figure 2: Torquw

#### **Question Three (20 marks)**

- a. Briefly describe the following modes of heat transfer
  - i. conduction (1 mark) ii. convection (1 mark)
  - radiation (1 mark) iii.
- b. Differentiate between heat capacity and latent heat
- c. A calorimeter with heat capacity of 80 J/K contains 50 g of water at 40 °C. What mass of ice at 0 <sup>0</sup>C needs to be added in order to reduce the temperature to 10 <sup>0</sup>C? Assume no heat is lost to the surrounding. Specific heat capacity of water is  $4.2 \times 10^3 \text{ J/kg K}$ and specific latent heat of ice is  $3.4 \times 10^5$  J/kg. (5 marks)
- d. A whistle giving out 500 Hz moves away from a stationery observer in a direction towards and perpendicular to a flat wall with a velocity of 1.5 m/s. How many beats per second will be heard by the observer? Take the speed of sound as 336 m/s and assume there is no wind. (4 marks).
- e. Name at least four types of electromagnetic radiation. (2marks)
- f. Describe at least one use of each of the electromagnetic radiation mention in (f) above. (4 marks)

### **Question Four (20 marks)**

- a. If a fish is 2m below the surface, how deep does the fish appear to be to n observer directly above? The refractive index of water is 1.33. (3 marks)
- b. Use ray diagrams to show the formation of an image by a convex lens when an object is placed:
  - i. beyond the center of curvature (3 marks)
  - ii. between the center of curvature and principle focus (3 marks)
  - iii. between the principle focus and the lens (3 marks)
- c. An object is placed 0.2 m in front of a convex lens of focal length 0.4 m.
  - i. Calculate the magnification of the image formed (4 marks)
  - ii. if the convex lens is replaced with a concave lens of equal length, what will be the magnification of the new image formed? (4 marks)

### **Question Five (20 marks)**

- a. For the circuit shown in Figure 3, calculate:
  - i. capacitance of the combination (4 marks) ii. total charge (2 marks) iii. energy stored

(2 marks)

- (2 marks)



Figure 3: Capacitors

- b. Show that the charge decreases exponentially with time when a capacitor is discharging. (5 marks)
- c. A network is as arranged in Figure 4. Determine:
  - i. The equivalent resistance
  - ii. total current
  - iii. the voltage across the 2  $\Omega$  resistor



Figure 4: Resistors

- (3 marks)
- (2 marks)
- (2 marks)