

Technical University of Mombasa

Faculty of Applied and Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY

BTAC

ACH 4314 : ELECTROCHEMISTRY

SPECIAL/SUPPLEMENTARY EXAMINATION

MARCH 2014 SERIES

<u>2 HOURS</u> Instructions to candidates:

This paper consists of **FIVE** questions Answer question **ONE** (compulsory) and any other **TWO** questions

Question ONE

- a) Write the cell reaction involved and expression of calculating Ecell for Cd/Cd²⁺ // KCl / Hg₂Cl₂/Hg (4marks)
- b) Calculate :-
 - (i) Potential at 25°C for the cell Cu/Cu²⁺ 0.024/Ag⁺ (0.0048m) /Ag. (5marks)
 - (ii) The solubility product at 25°C for mg(OH)/₂ in mg(OH)₂/Mg gives E°red = -2.69 $mg^{2+}(aq) /Mg(s) E°red = -2.375V$ (4marks)
 - (iii) Time it will take to electrolysis water so as to produce 22.4ml H₂ at STP under a current of 10A. (4marks)

c) State :-

,							
	(i)	Different methods of preventing corrosion	(3marks)				
	(ii)	Basic design of a fuel cell	(3marks)				
d)	Differentiate between :-						
	(i)	And potential difference	(4marks)				
	(ii)	State electrolyte and flowing electrolyte as used as poisoning varia	nts (3marks)				
Question TWO							
a)	Calcul	late :-					
	(i)	EMF of the cells Zn(s) $/Zn^{2+}$ (0.024m//Zn ^{2+/} 2.4m/ Zn(s)	(4marks)				
	(ii)	Time required to deposit 56grams of silver from a silver nitrate s current of 4.5 A.	solution using a				
		Reaction $Ag^+ + e \rightarrow Ag(s)$	(4marks)				
b)	Write	reaction involved and expression for calculating the EMF of Sec	ondary battery				
		(4marks)					
c)	Define	the use of:-					

(i) Electrochemical biosensor

(ii)	Electrometallurgy	(5marks)
------	-------------------	----------

d) State characteristics of primary battery

Question THREE

a) With the help of chemical reactions Diagram describe Zinc-Carbon battery (9marks)

b)	Aoristic cell consisting of N1/N1 ²⁺ and Co/Co ²⁺ half cell is con-	nstructed with initial
	concentration of $N1^{2+} = 0.8M$ and $Co^{2+} = 0.2M$. Calculate the	value of Ecell given
	$E^{\circ}Cell = 0.03V.$	(5marks)
c)	Sketch a well label diagrams of phosphoric acid cell PAFC	(3marks)
d)	Explain mechanism of Electrolyte loss	(3marks)

(3marks)

Question FOUR

- a) Outline different factors used to evaluate batter's performance.
- b) Define the following
 - (i) Migration of ions
 - Fuel cell (ii)
 - Self discharge (iii)
 - (iv) Concentration potential
- c) Deduce and calculate solubility product for silver bromide in water at 25°C by considering the cell Ag/Ag⁺/Br⁻/AgBr(s) /Ag given $E^{\circ}Ag/Ag^{+} = 0.7981$ and Ag/AgBr/Br⁻ as 0.0711 (6marks)
- d) Outline
 - (i) Importance of electrochemical process
 - Working of pH meter (5marks) (ii)

Question FIVE

- a) Define the following
 - (i) Gas sensing electrodes
- (ii) Glass membrane electrodes (4marks) b) Differentiate between Electrowinning and electrorefining (4marks) c) State different application of electroplating process (2marks) d) 30 minutes of electrolysis of CuSo₄ solution produced 3.175g of copper at cathode.
- Calculate Amount of current passed (4marks)
- e) Explain limitations of Ostwald's dilution (4marks)

(3marks)

(6marks)