TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

AMA 4410: PARTIAL DIFFERENTIAL EQUATIONS 1

END OF SEMESTER EXAMINATION
SERIES:APRIL2016
TIME:2HOURS

DATE:Pick DateMay2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attempt question ONE (Compulsory) and any other TWO questions.
Do not write on the question paper. PAPER 1

QUESTION ONE (30 MARKS)

a) Describe the orthogonal trajectories of $y=k x^{2}, k \neq 0$
[6 Marks]
b) Obtain the general solution to the partial differential equation
$(y-z) p+(z-x) q=x-y$
[4 Marks]
c) Show that a the partial differential equation arising from

$$
z=\frac{1}{2}\left(a^{2}+2\right) x^{2}+a x y+b x+\phi(y+a x)
$$

can be put in the form $(r+u)(t+v)=s^{w}$ where u, v, w are integers.
[6 Marks]
d) Find the direction cosines of the space curve defined by the parametric equations
$x=-0.5 s^{2}, \quad y=0.25 s^{3}, \quad z=1.5 s^{2}$ through $(-2,-2,6)$
e) Find the complete solution of $\frac{\partial^{2} z}{\partial x^{2}}+3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=\sin (3 x-y)+12 x y$. [8 Marks]

QUESTION TWO (20 MARKS)

a) Classify the partial differential equation
$\frac{\partial^{2} z}{\partial x^{2}}+\left(5+2 y^{2}\right) \frac{\partial^{2} z}{\partial x \partial y}+\left(1+y^{2}\right)\left(4+y^{2}\right) \frac{\partial^{2} z}{\partial y^{2}}=0$
and find its characteristics.
[10 Marks]
b) Find a complete integral of the equation $p^{2} x+q^{2} y-z=0$ using Charpit's method.
[10 Marks]

QUESTION THREE (20 MARKS)

a) Derive the wave equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ for a perfectly flexible vibrating string of uniform density ρ stretched to a uniform density τ between two points $x=0$ and $x=L ; c^{2}=\frac{\tau}{\rho} \quad$ [8 Marks]
b) Solve the wave equation in (a) above satisfying the Cauchy conditions
$u(0, t)=u(L, t)=0, \quad t \geq 0$
$u(x, 0)=f(x), \quad 0 \leq x \leq 0$
$\left.u_{t}\right|_{t=0}=g(x), \quad 0 \leq x \leq 0$
where f and g are given functions
[12 Marks]

QUESTION FOUR (20 MARKS)

a) Find the General Solution of $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+5 \frac{\partial^{2} z}{\partial y^{2}}=\sin (3 x-y)$
b) Find a partial differential equation arising from the general solution

$$
\begin{equation*}
\phi\left(x^{6}-y^{6}, \frac{x^{3}+y^{3}}{z^{3}}\right)=0 \tag{5Marks}
\end{equation*}
$$

c) Find a complete solution of $p^{2} x+q^{2} y=z$ using Jacobi method.

QUESTION FIVE (20 MARKS)

a) Find the orthogonal trajectories on the conicoid $z(x+y)=4$ of a cone in which it is cut by the system of planes $x-y+z=k$ where k is a parameter.
[10 Marks]
b) Find the general integral of the partial differential equation $(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)$ and also the particular integral which passes through the line $x=1, \quad y=0 \quad$ [10 Marks]

