TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MARINE ENGINEERING
 EMR 2309: ENGINEERING MATHEMATICS VI
 END OF SEMESTER EXAMINATION
 SERIES:APRIL2016
 TIME:2HOURS

DATE:Pick DateMay2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE:
Q. 1 (a) Given the following data, estimate $f(1.83)$ using Newton - Gregory forward difference Interpolation Polynomial.

$x i$	1.0	3.0	5.0	7.0	9.0
$f x i$	0	1.0986	1.6094	1.9459	2.1972

(7 marks)
(b) Given the following data estimate $f(4.12)$ using Newton-Gregory backward difference Interpolation Polynomial.

$x i$	0	1	2	3	4	5
$f x i$	1	2	4	8	16	32

(8 marks)
(c) Evaluate the following integrals over the given region D :
$\iint_{D} 4 x y-y 3 d A: D$ is the region bounded by $\mathrm{y}=\sqrt{ } \mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{3}$. (7 marks)
(d) Given that $\frac{4 x y}{x^{2}-y^{2}} \frac{d y}{d x}=1$ and $y=0 ; x=1$, show that $\left(\sqrt{x)}\left(x^{2}-5 y^{2}\right)-1\right.$

(8 marks)

Question TWO

(a) Evaluate $\int_{0}^{1.2} e^{-x^{2 / 2}} d x$ correct to 3 significant figures using 6 intervals by using 6 intervals by using
(i) Trapezoidal Rule
(6 marks)
(ii) Simpsons Rule
(4 marks)
(b) The velocity V of a car has the following values for corresponding values of time t from $\mathrm{t}=0$ to $\mathrm{t}=8 \mathrm{~s}$.

$V m / s$	0	0.6	1.7	2.8	4.9	7	9.2	10.8	12.0
$t s$	0	1	2	3	4	5	6	7	8

Determine the approximate distance travelled by the car using Simpson's rule with 8 -intervals. (6 marks)
(c) Determine the value of $\int_{1}^{s} \log _{\mathrm{e}} x d x$ using the mid Ordinate rule with 8 intervals, giving your answer correct to 4 significant figures.
(4marks)

Question THREE

(a) The Oscillations of a heavily damped pendulum satisfy the differential equation.
$\frac{d^{2} x}{d t^{2}}+7 \frac{d x}{d t}+12 x=0$;
where $x \mathrm{~cm}$ is the displacement of the bob at time t -seconds.
The initial displacement is equal to +3 cm and the initial velocity i.e $\frac{d x}{d t}$ is $6 \mathrm{~cm} / \mathrm{s}$.
Solve the equation for x.
(8 marks)
(b) Determine the particular solution to the differential equation

$$
\frac{d^{2} y}{d x^{2}}+a y=12 \operatorname{Cos} 3 x \text { given }
$$

When $\mathrm{x}=0, \mathrm{y}=2$ and $\frac{d y}{d x}=3$

Question FOUR

(a) In a chemical reaction in which x is the amount transformed in time t, the velocity of the reaction is given by:
$\frac{d x}{d t}=K(a-x)$ where K is a constant and ' a ' is the concentration at time $\mathrm{t}=0$ when $\mathrm{x}=0$;
Determine x in terms of t.
(b) Solve the following differential equation
(i) $x d y / d x=y+x^{3}$ given $x=1$ when $y=3$.
(ii) $(y-x) \frac{d y}{d x}=\frac{y^{2}}{x}-y+\frac{x^{2}}{y}$ given that when $\mathrm{x}=1, \mathrm{y}=3$.

Question FIVE

(a) Sketch the region R in the xy-Plane bounded by the curves $y^{2}=2 x$ and $\mathrm{y}=\mathrm{x}$ hence determine the bound area. (8 marks)
(b) Evaluate the following integrals
(i) $\int_{y=0}^{3} \int_{x-1}^{\sqrt{4-y}}(x+y) d x d y$
(6 marks)
(ii) $\int_{0}^{1} \int_{0}^{1} \int_{\sqrt{x^{2}+y^{2}}}^{3} x y z d z d y d x$

