

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

DIPLOMA IN MARINE ENGINEERING

EMR 2309: ENGINEERING MATHEMATICS VI

END OF SEMESTER EXAMINATION

SERIES:APRIL2016

TIME:2HOURS

DATE: Pick Date May 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of **FIVE** questions. Attemptquestion ONE (Compulsory) and any other TWO questions. **Do not write on the question paper.**

Question ONE:

Q.1 (a) Given the following data, estimate f(1.83) using Newton – Gregory forward difference Interpolation Polynomial.

xi	1.0	3.0	5.0	7.0	9.0
fxi	0	1.0986	1.6094	1.9459	2.1972

(7 marks)

(b) Given the following data estimate f(4.12) using Newton-Gregory backward difference Interpolation Polynomial.

xi	0	1	2	3	4	5
fxi	1	2	4	8	16	32

(8 marks)

(c) Evaluate the following integrals over the given region D:

$$\iint_D 4xy - y3dA$$
: D is the region bounded by y= \sqrt{x} and y= x^3 . (7 marks)

(d) Given that
$$\frac{4xy}{x^2 - y^2} \frac{dy}{dx} = 1$$
 and $y = 0; x = 1$, show that $(\sqrt{x})(x^2 - 5y^2) - 1$ (8 marks)

Question TWO

(a) Evaluate $\int_0^{1.2} e^{-x^{2/2}} dx$ correct to 3 significant figures using 6 intervals by using 6 intervals by using

(i) Trapezoidal Rule

(6 marks)

(ii) Simpsons Rule

(4 marks)

(b) The velocity V of a car has the following values for corresponding values of time t from t=0 to t=8s.

V m/s	0	0.6	1.7	2.8	4.9	7	9.2	10.8	12.0
t s	0	1	2	3	4	5	6	7	8

Determine the approximate distance travelled by the car using Simpson's rule with 8-intervals. (6 marks)

(c) Determine the value of $\int_{1}^{s} \log_{e} x \, dx$ using the mid Ordinate rule with 8 intervals, giving your answer correct to 4 significant figures. (4marks)

Question THREE

(a) The Oscillations of a heavily damped pendulum satisfy the differential equation.

$$\frac{d^2x}{dt^2} + 7\frac{dx}{dt} + 12x = 0;$$
 where *x* cm is the displacement of the bob at time t-seconds.

The initial displacement is equal to +3cm and the initial velocity i.e dt is 6 cm/s. Solve the equation for x. (8 marks)

(b) Determine the particular solution to the differential equation

$$\frac{d^2 y}{dx^2} + ay = 12 \cos 3x \text{ given}$$
When $x = 0$, $y = 2$ and $\frac{dy}{dx} = 3$ (12 marks)

Question FOUR

dx

(a) In a chemical reaction in which x is the amount transformed in time t, the velocity of the reaction is given by:

 $\overline{dt} = K(a-x)$ where K is a constant and 'a' is the concentration at time t=0 when x=0; Determine x in terms of t. (6 marks)

(b) Solve the following differential equation © *Technical University of Mombasa*

(i) $xdy/dx=y+x^3$ given x=1 when y=3. (6 marks)

(ii)
$$(y-x)\frac{dy}{dx} = \frac{y^2}{x} - y + \frac{x^2}{y}$$
 given that when x=1, y=3. (8 marks)

Question FIVE

- Sketch the region R in the xy-Plane bounded by the curves $y^2 = 2x$ and y=x hence determine (a) (8 marks) the bound area.
 - (b) Evaluate the following integrals

(i)
$$\int_{y=0}^{3} \int_{x-1}^{\sqrt{4-y}} (x+y) dx dy$$
 (6 marks)
(ii)
$$\int_{0}^{1} \int_{0}^{1} \int_{\sqrt{x^{2}+y^{2}}}^{3} xyz dz dy dx$$
 (6 marks)

(ii)
$$\int_0^1 \int_0^1 \int_{\sqrt{x^2+y^2}}^3 xyzdzdydx$$
 (6 marks)