TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES
 DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:
 DIPLOMA IN MARINE ENGINEERING
 EMR 2309: ENGINEERING MATHEMATICS VI
 END OF SEMESTER EXAMINATION
 SERIES:APRIL2016
 TIME:2HOURS

DATE:Pick DateMay2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE :
(a) The Velocity of a body, V , is equal to its rate of change of distance, $\frac{d x}{d t}$; Determine an equation for x in terms of t given $V=U+a t$, where ' U ' and ' a ' are constants and $\mathrm{x}=0$ when $\mathrm{t}=0$.
(b) Determine in particular solution of the differential equation.

$$
\frac{d y}{d x}+2 x=y \text { given that when } \mathrm{x}=0, \mathrm{y}=2 .
$$

(c) Determine the particular solution to the differential equation

$$
\begin{equation*}
4 \frac{d^{2} y}{d t^{2}}-12 \frac{d y}{d t}+9 y=0 \tag{8marks}
\end{equation*}
$$

Given at $\mathrm{t}=0, \mathrm{y}=2$ and $\frac{d y}{d t}=4$
(d) Evaluate $\int_{0}^{\pi / 2} \frac{1}{1+1 / 2 \sin ^{2} \theta} d \theta$, Using Simpson's rule with six intervals correct to 3 decimal places.
(e) Determine $\int_{x=0}^{x=2} \int_{y=0}^{y=2 x}\left(y+x y+x y^{2}\right) d y d x$

Question TWO

(a) Solve the following first order differential equations
(i) $x \frac{d y}{d x}+\frac{y^{2}}{x}=y$
(6 marks)
(ii) $(x+2) \frac{d y}{d x}=3-\frac{2 y}{x}$
(9 marks)
(b) The rate at which a body cools is given by the equation

$$
\frac{d \theta}{d t}=-k \theta, \text { where } \theta \text { is the temperature of the body above its surrounding and } \mathrm{k} \text { is a }
$$ constant.

Solve for θ, given that at $\mathrm{t}=0 ; \theta=\theta_{0}$.

Question THREE

(a) Determine the particular solution of the differential equation.

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=5 y=0 \text { given }
$$

when $\mathrm{x}=0, \mathrm{y}=1$ and $\frac{d x}{d t}=5$.
(b) Solve the differential equation $2 \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}=3 y=4 \operatorname{Sin} 2 x$ (12 marks)

Question FOUR

(a) Obtain $\int_{1}^{3} 5 / x d x$.
(b) Use the trapezoidal rule with 8 intervals to obtain $\int_{1}^{3} 5 / x d x$.
(c) Use Simpson's rule with 8 intervals to obtain $\int_{1}^{3} 5 / x d x$.
(d) Determine the percentage error in determining $\int_{1}^{3} 5 / x d x$ using
(i) Trapezoidal rule
(ii) Simpsons Rule.
(e) Use the Mid Ordinate rule to obtain $\int_{1}^{3} \frac{1}{\sqrt{x}} d x$ using 4 intervals.

Question FIVE

(a) Determine the area of a plane figure bounded by the curves.

$$
\begin{equation*}
y_{1}=(x-1)^{2} \text { and } y_{2}=4-(x-3)^{2} \tag{9marks}
\end{equation*}
$$

(b) Determine the following double integral, given K is a constant

$$
\begin{equation*}
\int_{0}^{6} \int_{0}^{4} K\left(x^{2}+y^{2}\right) d y d x \tag{4marks}
\end{equation*}
$$

(c) Determine the volume of the solid bounded by the planes $x=0, y=0, Z=x$, $\mathrm{z}=2$ and $\mathrm{y}=4-\mathrm{x}^{2}$ in the first quadrant.

