TIME:2HOURS
DATE:May2016

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of FIVE questions. Attemptquestion ONE (Compulsory) and any other TWO questions.
Do not write on the question paper.

Question ONE

(a) Evaluate $\lim _{z \rightarrow \infty} \frac{2 z^{2}+4 z+5}{5 z+z-5}$
(b) If $\mathrm{a}=6-3 \mathrm{i}$ and $\mathrm{b}=2-\mathrm{i}$,Evaluate $\frac{a+b}{a}$ (3mrks)
(c) Find the conjugate of the complex number $Z=\frac{1}{2-3 i}$
(3mrks)
(d) Evaluate $\lim _{z \rightarrow 3+4 i}\left(\frac{4+z^{2}}{z}\right)$
(e) If $f(z)=\left(z^{3}+4 z\right)^{2}$ find the derivative of $f(z)$ (4mrks)
(f) show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is harmonic
(g) prove that $\sec (\mathrm{z})=\frac{z}{e^{i z}+e^{-i z}}$
(h) Find all the singular points of the function $f(z)=\frac{i+z^{3}}{2-3 z+z^{2}}$
(i) Describe the domain of the function $f(z)=\frac{z}{e^{z}-1}(2 \mathrm{mrks})$

Question TWO

(a) Show that the function $f(z)=\frac{-1}{(z-1)(z-2)}$ is analytic in the domain $\mathrm{D}_{1},: 1 \mathrm{z} 1<2 \quad$ and $\mathrm{D}_{2},: 1 \leq 1 \mathrm{z} 1<$ 2(6mrks)
(b) Evaluate $\int \frac{1}{4+z^{2}} \mathrm{dz}$ where $\mathrm{c}:|\mathrm{z}-\mathrm{i}|=2$
(c) Find the Taylor series for the function $f(Z)=e^{2 z}$

Question THREE

(a) Solve for Z in $e^{Z}=-1$
(b) Prove that \sin (iy) $=\mathrm{i} \sinh (\mathrm{y})$
(c) Show that $\log (1+\mathrm{i})^{2}=2 \log (1+\mathrm{i})$
(d) Evaluate $(-i)^{i}$

Question FOUR

(a) If $\mathrm{z}=2+5$ i find $^{\frac{1}{4}}$ the fourth roots of z
(b) Illustrate the following transformation $f(z)=z^{2}$ for the line $\mathrm{x}=1$
c) Show that $f(z)=\frac{z}{\bar{Z}}$ is not continuous on the entire Z-plane
d) Evaluate $2 i^{i}$

Question FIVE

(a) Find the derivative of $f(z)=z^{2} \quad$ by Cauchy theorem
(b) Show that the function $f(z)=3 x+y+(3 y-x) i$ is entire
(c) Find the Harmonic conjugate of the function $\mathrm{u}(\mathrm{x}, \mathrm{y})=e^{y} \sin (\mathrm{x})$ Hence find the function $f(x, y)=u+i v \quad(6 \mathrm{mrks})$
(d) Show that the function in $f(z)=\frac{2 z+4}{5 z}$ is continuous at $\mathrm{z}=2 \quad$ (4mrks)

