TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences

DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

SMA 2480: COMPLEX ANALYSIS
END OF SEMESTER EXAMINATION
SERIES: MAY 2016

TIME: 2 HOURS

DATE: 2016

PAPER B

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Question one is compulsory. Answer any other two questions Do not write on the question paper.

QUESTION ONE (COMPULSORY)

a) Evaluate $\quad \lim _{\Delta z \rightarrow i} \frac{z^{10}+1}{z^{6}+1}$
b) Given that $z_{1}=2+i, \quad z_{2}=3-2 i, \quad z_{3}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ evaluate
i) $\quad\left|3 z_{1}-4 z_{2}\right|$
ii) $\quad\left|\frac{2 z_{2}+z_{1}-5-i}{2 z_{1}-z_{2}+3-i}\right|^{2}$
c) Prove that if $\lim _{z \rightarrow z_{0}} f(z)$ exists, then the limit is unique
d) Define an analytic function
e) Determine the poles of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and obtain the Residues at each point
f) Show that if two images of two curves under a conformal mapping are orthogonal , then those curves must be orthogonal then those curves must be orthogonal (6 marks)

QUESTION TWO

a) State and Prove the Cauchy's Integral Theorem
(12 marks)
b) Evaluate $\int_{c} \frac{2 z-1}{z(z+1)(z-3)} d z$ where c is the circle $|z|=2$ (8 marks)

QUESTION THREE

a) State and prove the Cauchy Riemann Equations
(10 marks)
b) Obtain the Isolated singular points, $\operatorname{Re} s\{f(z), a\}$ of the function

$$
\begin{equation*}
f(z)=\frac{1}{(z-3)(z+1)} \tag{6marks}
\end{equation*}
$$

c) Show that $e^{i z}=\cos z+i \sin z$

QUESTION FOUR

a) State and Prove the Residue Theorem
b) Given that $\lim _{z \rightarrow z_{0}} f(z)=A$ and $\lim _{z \rightarrow z_{0}} g(z)=B$. Prove that $\lim _{z \rightarrow z_{0}}|f(z)+g(z)|=A+B$ (10 marks)

QUESTION FIVE

a) Given that $F(t)=\cos$ at obtain $L\{\cos a t\}$
(15 marks)
b) Evaluate $\lim _{z \rightarrow-2 i} \frac{(2 z+3)(z-1)}{z^{2}-2 z+4}$

