TECHNICAL UNIVERSITY OF MOMBASA

Faculty of applied and Health Sciences DEPARTMENT OF MATHEMATICS AND PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING
SMA 2480: COMPLEX ANALYSIS
END OF SEMESTER EXAMINATION
SERIES: MAY 2016
TIME: 2 HOURS
DATE: 2016
PAPER A

Instructions to Candidates

You should have the following for this examination
-Answer Booklet, examination pass and student ID
This paper consists of 5 questions. Question one is compulsory. Answer any other two questions Do not write on the question paper.

QUESTION ONE (COMPULSORY)

a) Given that $z_{1}=2+i, \quad z_{2}=3-2 i, \quad z_{3}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ evaluate
i) $\quad\left|3 z_{1}-4 z_{2}\right|$
ii) $\quad\left|\frac{2 z_{2}+z_{1}-5-i}{2 z_{1}-z_{2}+3-i}\right|^{2}$
b) Derive the Polar form of complex numbers from a point say $A(x, y)$ on the Cartesian plane.
c) Prove that $(\cos \theta+i \sin \theta)^{n}=(\cos n \theta+i \sin n \theta)$ where n is a positive integer
d) Obtain the isolated singular points, $\operatorname{Re} s\{f(z), a\}$ of the function given by

$$
\begin{equation*}
f(z)=\frac{1}{(z-3)(z+1)} \tag{6marks}
\end{equation*}
$$

e) Define a Laplace inverse transform
f) Show that if images to two curves under a conformal mapping are orthogonal then the curves are orthogonal
g) Check if the function $z^{2}=\left(x^{2}-y^{2}\right)+2 x y i$ satisfies the Cauchy Riemann equations

QUESTION TWO

a) State and prove the Cauchy Riemann Equations
(10 marks)
b) Evaluate $\int_{c} \frac{e^{z}}{(z+1)^{2}} d z$ where c is the circle $|z-1|=3$
c) Show that $e^{i z}=\cos z+i \sin z$

QUESTION THREE

a) State and prove the Residue Theorem
b) Using definition of a derivative, obtain the derivative of $w=f(z)=z^{3}-2 z$ at

$$
z=z_{0}=0
$$

QUESTION FOUR

a) State and prove the Cauchy Integral Theorem
(12 marks)
b) Evaluate $\int_{0}^{4+2 i} \bar{z} d z$ along the curve given by $z=t^{2}+i t$

QUESTION FIVE

a) Given that $L\{f(x)\}=\frac{s+1}{s^{2}+s-6}$ obtain $f(x)$
b) Show that $u=e^{-x}(x \sin y-y \cos y)$ is a harmonic function

