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Instructions to Candidates 

You should have the following to do this examination:  

-Answer Booklet, examination pass and student ID 
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Answer question One and any other two 

 

Question ONE (30 marks) 

a)  Using the differential operator evaluate  xD sin)5( 2  .                                              (3 marks)   

b) Using a solution form the complimentary function of xeyy //  hence solve by reduction of 

order to obtain the particular integral.                                                                               (6 marks) 

c) Use Bernoulli’s method to solve 342 yy
dx

dy
x  .             (5 marks) 



d) Find the inverse laplace transform of  
34

2
)(

2 




ss

s
SF                                            (4 marks) 

e)  Determine the general solution if 0)433()(  dyyxdxyx                              (6 marks) 

f) The initial temperature of a body is c053  and after 5 minutes its temperature is c045 , from 

Newton’s law of cooling it is known that the rate of cooling of a body is proportional to the 

temperature difference between the body and its surrounding room temperature. Use this to 

predict the temperature of the body after a further 5 minutes given that the room temperature was 

constant at 210C.                                    (6 marks) 

Question TWO (20 marks) 

a) Solve the linear fractional differential equation  
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dx

dy
.                                  (7 marks) 

b) Obtain the complimentary function hence find the particular integral of xyD tan)1( 2   by 

variation of parameter method.                                                                   (9 marks) 

c)  Solve the differential equation   054
2
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 y
dx

dy

dx

yd

.
                                                 (4 marks) 

Question THREE (20 marks) 

a) Identify all regular singular points in the differential equation
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xxx .              (5 marks) 

b)  Solve the differential equation   35
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dx

dy

dx

yd

.
                                                         (4 marks) 

c) Use D-operator method to find the general solution to   xyDD 2sin432  .         (5 marks) 

d)  An object moves with simple harmonic motion on the x axis. Initially it is located at a 

distance 46 m away from the origin when t=0 and has velocity v=15 m/s and decelerating at 

2/100 sm  directed towards the origin O. find the equation of the position at any time t.  (6 marks) 



        

 

Question FOUR (20 marks) 

a) Solve the differential equation 
x
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dx

dy 12 
                                                                   (4 marks)  

b) Solve the differential equation .04914
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 y
dx

dy

dx
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                (3 marks) 
 

c) Solve the linear differential equation   092  xy
dx

dy
x  if y(0)=1.                            (5 marks) 

d) If  
xey 2

1
  is a solution of 04//  yy  find a 2nd independent solution of this differential 

equation.                              (8 marks) 
 

Question Five (20 marks) 

a) Verify whether it’s an exact differential equation hence solve     01323  dyxydxxy                                                         

.                                                                                                                                     (5 marks) 

b) Use Laplace transform to solve 42  x
dt

dx
given at t=0 then x=1.                            (6 marks) 

c) An electric circuit consists of an inductance of 0.1 henry a resistance of 20 ohms and a 

condenser of capacitance 25 microfarads. Find the charge q and the current i  at any time t, given 

that the initial conditions are q =0.05 coulombs and 0
dt

dq
i  when t =0 if
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                                                                       THE END 


