

TECHNICAL UNIVERSITY OF MOMBA

FACULTY OF APPLIED AND HEALTH SCIENCES

MATHS AND PHYSICS DEPARTMENT

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER SCIENCE

AMA 4435: MEASURE INTEGRATION AND PROBABILITY PAPER 1

END OF SEMESTER EXAMINATION

SERIES: MAY 2016

TIME:2 HOURS

DATE: MAY 2016

Instructions to Candidates You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of FIVE questions. AttemptQUESTION 1 AND ANY OTHER TWO FROM QUESTIONS 2-5. Do not write on the question paper.

Question ONE (30 MARKS)

- a. Define the following terms
 - Ι Measure of a set (2 marks)
 - II. (2 marks) A space
 - III. A complete measure (2 marks)
- b. Distinguish between the positive and negative parts of a function (4marks)
- c. Let (X,x) be a measurable space, if $x \subseteq X$ is called a σ algebra, outline the conditions that it must be satisfy.(4 marks)
- d. By use of a counter example, show that if $f \subset x$, so that if and fand $f \in x$ but the converse is not true (6 marks)
- e. State the monotone convergence theorem (4 marks)
- State three examples of measurable spaces (3 marks) f.

g. Outline three conditions that make a measurable set to be countable.(3marks) ©Technical University of Mombasa

Question TWO (20 marks)

- a. Let (X, x) be a measurable space. In order that a function $f: X \to R_e$ be x- measurable. Outline the necessary and sufficient conditions that must be fulfilled (8marks)
- b. Let (X, x) be a measurable and f, g: $X \to \mathbb{R}_e$ be x- measurable functions and let $c \in \mathbb{R}$. Prove that the functions $cf, c + f, f^2, |f|, f + g, fg f^+ and f^- are all x- measurable (12 marks)$

Question THREE

- a. Let f: $X \to R_e$ be measurable with $f \gg 0$ (f: $X \to (0, \infty)$). Prove that there exists an increasing sequence of simple functions $\emptyset_n : X \to \mathbb{R}$ which converges to f pointwise. i.e. $f(x) = \lim_{n \to \infty} (\emptyset_n(x))^1$ for all $x \in \mathbb{R}$ (12 marks)
- b. Prove that if a function f is measurable then a measurable function is integrable *iff* |f | is integrable and $|\int f du| \ll \int |f du|$ (8 marks)

Question FOUR (20 marks)

- a. Let ψ be asimple measurable function belonging to $M^+(X, x)$ Let $\lambda: \to R_e$ be defined by $\lambda(E) = \int \psi \chi_E d\mu$ for $E \in x$. Show that $\lambda(E)$ is a measure (14 marks)
- b. State Fatou's lemma. Do not prove it. (4 marks)
- c. State the law of large numbers.

Question FIVE (20 marks)

- a. What do you understand by the term probability measure? State four points. (4 marks)
- b. State Demorgan's laws and prove that a set is enclosed under countable intersections (6 marks)
- c. Let (X, x, μ) be a measure space. prove that μ is monotone if $E, F \in x$ and $F \subset E$ (4 Marks)
- d. State and prove the central limit theorem (6marks)