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Question ONE (30 MARKS) 

a. Define the following terms  

I. Measure of a set        (2 marks)

II. A space                       (2 marks)  

III. A complete measure   (2 marks)      

b. Distinguish between the positive and negative parts of a function (4marks)

c. Let ( Ӿ,ӿ)  be a measurable space, if 

satisfy.(4 marks)  

d. By use of a counter example, show that if f

(6 marks) 

e. State the monotone convergence theorem( 4 marks)

f. State three examples of measurable spaces (3 marks)

g. Outline three conditions that make a measurable set to be countable.(3marks)
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. AttemptQUESTION 1 AND ANY OTHER TWO FROM QUESTIONS 2

Measure of a set        (2 marks) 

A space                       (2 marks)   

A complete measure   (2 marks)       

Distinguish between the positive and negative parts of a function (4marks) 

be a measurable space, if ӿ ⊆Ӿ is called a σ- algebra, outline the conditions that

By use of a counter example, show that if f ⊂  ӿ ,  so that if and fand � ∈ ӿ but the converse is not true  

State the monotone convergence theorem( 4 marks) 

State three examples of measurable spaces (3 marks) 

conditions that make a measurable set to be countable.(3marks) 
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QUESTION 1 AND ANY OTHER TWO FROM QUESTIONS 2- 5. 

algebra, outline the conditions that it  must be 

but the converse is not true  
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Question TWO (20 marks) 

a. Let (Ӿ, ӿ)   be a measurable space. In order that a function f:Ӿ → ��  be ӿ- measurable.  Outline the 

necessary and sufficient conditions that must be fulfilled (8marks) 

 

b. Let (Ӿ, ӿ)   be a measurable and f, g: Ӿ → ℝ�  be ӿ- measurable functions and let � ∈ ℝ. Prove that the 

functions ��, � + �,  ��, | �|, � + �, �� �� ��� �� ��� ���   ӿ- measurable (12 marks) 

 

Question THREE 

a. Let f: Ӿ → �� be measurable with� ≫ 0 ( f: Ӿ → ( 0, ∞). Prove that there exists an increasing sequence 

of simple functions ∅�: � → ℝ  which converges to f pointwise. i.e.f(x) = lim�→�(∅�(�))� for 

all� ∈ ℝ  (12 marks) 

b.  Prove that if a function f is measurable then a measurable function is integrableiff|f | is integrable and  

|∫ ���| ≪ ∫ |���| (8 marks) 

 

Question FOUR (20 marks) 

a. Let � be asimple measurable function belonging to ��(Ӿ, ӿ) Let �: → �� be defined by�(�) =

∫ � ����   ��� �� ӿ. Show that �(�) �� � ������� (14 marks) 

b. State Fatou’s lemma. Do not prove it. ( 4 marks ) 

c. State the law of large numbers. 

 

Question FIVE (20 marks) 

a. What do you understand by the term probability measure? State four points. (4 marks) 

b. State Demorgan’s laws and prove that a set is enclosed under countable intersections (6 marks) 

c. Let (Ӿ, ӿ, �) be a measure space. prove that � is monotone if �, �� ӿ ��� � ⊂ � (4 Marks) 

d. State and prove the central limit theorem (6marks) 

 

 

 


