Technical University of Mombasa
 Faculty of Applied and Health Sciences
 DEPARTMENT OF PURE AND APPLIED SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY BTAC

ACH 4208: PHYSICAL CHEMISTRY II

SPECIAL/SUPPLEMENTARY EXAMINATION

MARCH 2014 SERIES

2 HOURS
Instructions to candidates:
This paper consist of FIVE questions
Answer question ONE (compulsory) and any other TWO questions

Question ONE

a) Define
(i) Standard Enthalpy of formation
(ii) Liquefaction of gases
(iii) Activity of ideal gases
(iv) Heat capacity
b) At $20^{\circ} \mathrm{C}$ the EmF of $\mathrm{Hg}\left|\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})\right| \mathrm{HCl}(\mathrm{aq})\left|\mathrm{H}_{2} \mathrm{~g}\right| \mathrm{PE}$ is 0.2692 V and of $30^{\circ} \mathrm{C}$ is 0.2660 V find the valves of change in free energy and entropy change at $25^{\circ} \mathrm{C}$
$0.5 \mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s}) \mathrm{Cl}(\mathrm{s})+1 / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{Hg}(\mathrm{l})+\mathrm{HCl}(\mathrm{aq})$
(5marks)
(i) Equilibrium constant at $25^{\circ} \mathrm{C}$ given $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ as 161.9, -110.5 and 130.6 Kj per mole respectively $\mathrm{Co}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad$ (5marks)
(ii) Standard free energy change for the reaction below $\left(\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\right.$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~g}) \mathrm{O}_{3}(\mathrm{~g})$, $\mathrm{Co}(\mathrm{g}), \mathrm{Fe}(\mathrm{s})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ as $-824.3,-110.5,0$ and 393.5 Kj per mole
respectively
87.4, 197.6, while standard entropies of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~g}), \mathrm{CO}(\mathrm{g}), \mathrm{Fe}(\mathrm{s})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ as 27.3 and 213.6 joules per kilo mole respectively)

$$
\begin{equation*}
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \tag{7marks}
\end{equation*}
$$

c) Sketch phase diagram for substance X dissolve in ice and show the following eutectic and congruent mP with their respective composition
(5marks)

Composition in mole per cent	Congruent, melting point	Eutectic point	Compound
20	-	-20	
30	-	-10	$\mathrm{X} .4 \mathrm{H}_{2} \mathrm{O}$
25	5	-	$\mathrm{X} 2 \mathrm{H}_{2} \mathrm{O}$
35	10	-	

Question TWO

a) Differentiate between incongruent melting and congruent melting point
(3marks)
b) The vapour pressure of water at $25^{\circ} \mathrm{C}$ is $2.47 \times 10^{3} \mathrm{Pascal}$ while its partial pressure is 2.35×10^{3} pascal. Calculate activity of water
(3marks)
c) During combustion of 1.5 grams of Mapthalene $\mathrm{C}_{8} \mathrm{H}_{10}$ in constant volume colorimeter 1500 grams of water rose from $15.17^{\circ} \mathrm{C}$ to $22.84^{\circ} \mathrm{C}$. Given heat capacity of Naphalene as $1.8 \times 10^{3} \delta /{ }^{\circ} \mathrm{C}$ and specific heat of water as $4.184 \delta /{ }^{\circ} \mathrm{C}$ calculate molar molar enthalpy of combustion of Napthalene
(5marks)
d) Differentiate between path function and state function
(2marks)
e) Given standard enthalpies of formation of $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}), \mathrm{NH}_{4}{ }^{+}(\mathrm{aq}), \mathrm{NO}_{3}-(\mathrm{aq})$ as -365.56 , -132.51 and -205.0 kilojoules per mole respectively and standard entropies of $\mathrm{NH}_{4} \mathrm{NO}(\mathrm{s})$ $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq}), \mathrm{NO}_{3}(\mathrm{aq})$ as $151.08,113.4$ and 146.4 Kjoules per mole respectively. Calculate standard free energy change at $25^{\circ} \mathrm{C}$
f) Reaction $\mathrm{NH}_{4} \mathrm{NO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}{ }^{+} \mathrm{a}$) $)+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
(5marks)

Question THREE

a) The partial pressure at 300 Kelvin for $\mathrm{CH}_{4}(\mathrm{~g}) 0.320, \mathrm{CS}_{2}(\mathrm{~g}) 0.252, \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) 0.125$
and $\mathrm{H}_{2}(\mathrm{~g})$ as 0.1 atmospheres respectively calculate change in free energy.
Reaction $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$
(6marks)
b) A bomb calorimeter contains 2 ml of benzene (density $0.856 \mathrm{~g} / \mathrm{ml}$) with excess oxygen. One combustion of benzene the temperatures changes by $6.329^{\circ} \mathrm{C}$. Calculate enthalpy of combustion of benzene (heat capacity of benzene is 11250.8joules $/{ }^{\circ} \mathrm{C}$)
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+7.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(5marks)
c) The change is free energy and entropy change during adiabatic isothermal compression of one mole of an ideal gas at 300 Kelvin is from 101.3 KPa to 10.13 mPa . Calculate work done
(4marks)
d) Calculate enthalpy of formation of $\mathrm{KOH}(\mathrm{s})$
$\mathrm{K}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{KPH}(\mathrm{s})$
Using the following data
I. $\quad 2 \mathrm{Ks}+2 \mathrm{HsO}(\mathrm{l}) \rightarrow 2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H},=-376.6 \mathrm{Kj}$
II. $\quad 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{2}=-577.4 \mathrm{KJ}$
III. $2 \mathrm{KOH}(\mathrm{s})+\mathrm{aq} \rightarrow \mathrm{KOH}(\mathrm{aq}) \quad \Delta \mathrm{H}_{3}=-58.58 \mathrm{Kj}$
(5marks)

Question FOUR

a) Given $\mathrm{Pc}=45.0 \mathrm{~atm}, \mathrm{VC}=275.8 \mathrm{~L}$. Per mole calculated van der Waals constant Q and B (3marks)
b) Two liquids A and B form ideal solution at 300 K , The partial pressure of solution containing 1 mole of A and 3 moles of B is 550 mm of Hq . If one mole of B is added to this solution the vapour pressure increases by 10 mm of Hg . Determine vapour pressure of A and B
(6marks)
c) At 30 C combustion of Hydrocarbon at constant pressure release 515.3 Kj determine work done
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{N}}(\mathrm{l})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(6marks)
d) Explain
(i) Classical thermodynamics
(ii) Joule Thomson effect
(5marks)

Question FIVE

a) An aqueous solution containing 28% by mass of liquid $\mathrm{A}(\mathrm{Rmm}=140)$ has A vapour
pressure of 160 mmHg at $37^{\circ} \mathrm{C}$ is 150 mmHg).
b) Explain
(i) Equilibrium thermodynamics
(ii) Non-Equilibrium thermodynamics
c) Sketch a well labelled diagram of water system showing all phases at equilibrium. (5marks)
d) Calculated the valve of gas constant R for one mole of ages at S.T.P (273 Kelvin and 760 tons)
e) Explain Zenith law of thermodynamics
(3marks)
(3marks)

