

DEPARTMENT OF PURE AND APPLIED SCIENCES

DIPLOMA IN ANALYTICAL CHEMISTRY (DAC 12S)

ACH 2209: INSTRUMENTAL METHODS OF ANALYSIS I

SPECIAL/SUPPLEMENTARY: EXAMINATIONS

SERIES: OCTOBER 2013

TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this paper
Answer booklet
This paper consists of *FIVE* questions.
Answer Question **ONE (compulsory)** and any other **TWO** questions *This paper consists of 4 PRINTED pages*

Question ONE

- a) Using suitable examples where possible briefly discuss each of the following
 - (i) Dual properties of electromagnetic radiation
 - (ii) Interferometer wavelength selector
 - (iii) The display urith in a spectrophotometer
 - (iv) Resolution of spectra
 - (v) Spectroscopy
- b) Differentiate between
 - (i) Absorbance and emission spectrum
 - (ii) Hume and plasma sources of thermal energy
- c) Describe the preparation and use of a calibration curve for UV/Vis analysis (7marks)
- d) The wavelength of sodium D line is 589nm. Determine the frequency and energy of this radiation? ($c = 3.0 \times 10^8$ mls, $h = 6.63 \times 10^{-34}$ J.s and 1nm = 1.0×10^{-9} m). (5marks)

Question TWO

- a) Some molecules absorb electromagnetic radiation in the UV/Vis region of the electromagnetic spectrum.
 - (i) Define UV/Vis spectroscopy and explain what process goes on in a molecule when it absorbs UV/Vis radiation. (5marks)
 - (ii) From the list below select the molecules that will absorb light in the UV/Vis region of the electromagnetic spectrum. Explain your choice

(4marks)

(10marks)

(4marks) (4marks)

© 2013 – Technical University of Mombasa

b) The following molecules absorb UV/Vis radiation. Study them and answer the questions that follow:

- (i) Identify the number of conjugated double bonds in each of the molecules labelled A to D (4marks)
- (ii) Rank the molecules in order of increasing wavelength of absorption of UV/Vis radiation.

(4marks)

(iii) Explain why an increase in conjunction why an increase in conjugation increases the wavelength of absorption of UV/Vis radiation (3marks)

Question THREE

a) The relationship between incident and transmitted radiation during spectrophotometric analysis is given by Beer – Lambert law. Beer-Lambert law can simply be written as

$$Log\left(\frac{IO}{I}\right) = A = ECI$$

marks)
marks)
marks)
marks)
r

Question FOUR

Discuss the use of the following wavelength selectors for a given spectrophotometer.

(i)	Fitters	(4marks)
(ii)	Prism Monochromator	(6marks)
(iii)	Diffraction grating monochromators	(10marks)

Question FIVE

- a) Explain the difference between
 - (i) Absorption and emission spectroscopy (4marks)
 - (ii) Continuum and line sources of electromagnetic radiation (4marks)
 - (iii) Classical and instrumental methods of analysis
- b) A UV/Vis spectrophotometric determination of copper II sulphate concentration in an unknown sample was done at 635nm. The following data was obtained using standard copper II sulphate solutions

Concentration (PPM)		Absorbance
1	0.03	
2	0.07	
5	0.15	
7	0.22	
9	0.25	
10	0.31	

If the unknown copper II sulphate sample gave an absorbance of 0.11, draw a calibration curve and determine its concentration. (8marks)

(4marks)