

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

CERTIFICATE IN ARCHITECTURE (09)

END OF SEMESTER EXAMINATIONS

APRIL/MAY 2010 SERIES

STRENGTH OF MATERIAL I

TIME: 2 HOURS

Instructions to Candidates

You should have the following for this examination:

- Answer booklet
- Mathematical tables/Calculator
- Graph Paper

This paper consists of **FIVE** Questions Answer question **ONE** and any other **TWO** Questions. Maximum marks for each part of a question are as shown.

© Department of Building and Civil Engineering

Question ONE (Compulsory - 30 Marks)

- (a). State Hookes law and show the mathematical expression and Parameters associated with it. (2½ Marks)
- (b). A specimen has initial gauge length of 55mm and a cross-sectional area of 150mm². A test on the specimen gave the following results.

Load (KN)	0	10	20	30	35	38	40
Extension	0	0.075	0.15	0.23	0.30	0.38	0.60
(mm)							

Draw the stress-strain graph and hence determine 0.2% proof stress.

(27½ Marks)

Question TWO

(a). A uniform bar weighing 500N is held in a horizontal position by three vertical wires as shown in Fig. 1 below. The outer wires are of 1.25mm diameter brass and the centre one is 0.625mm steel.

Estimate the stress in the wires if:

$$E_s = 200 KN / mm^2$$

 Σ_s 200 million and beam remained horizontal.

 $E_b = 85 KN / mm^2$

Fig. 1

(10 Marks)

(b). A simply supported beam in Fig. 2 is 4m long, t is subjected to two point load of 2KN and 4KN each at a distance of 1.5m and 3.0m from the left end. Draw the shear force diagram and bending moment diagram for the beam, giving values for specific points.

Question THREE

(a). Give the **FIVE** assumptions of the theory of simple bending.

(5 Marks)

(b). An I-Section in Fig. 2 is made up of three rectangles i.e. two flanges having thin long horizontals and one web connecting them, having its long side vertical. The top flange section is 150 x 25mm and that of the bottom flange is 300 x 50mm. The web section is 200mm deep and 25mm broad. Find the height of the cg of the area of this cross section from the bottom of the lower flange.

Fig. 2

⁽¹⁵ Marks)

Question FOUR

The figure 3 shows a warren girder consisting of seven members each 5m length, freely supported at its end points. The girder is loaded at points B and C as shown. Using any analytical method. Find the force of all the members indicating whether the force is compressive or tensile.

Question FIVE

The wooden planks 150mm x 150mm each are connected to form T- Section of beam. If the moment of 3.4KN/m is applied around horizontal neutral axis, indicating tension below the neutral axis, find the stress at the extreme fibres of X-Section. Also Calculate the total tensile force on the X-Section.

(20 Marks)