

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BTMB

PAPER 2

ABT 4405: BIOINFORMATICS

END OF SEMESTER EXAMINATION

SERIES: APRIL 2016

TIME:2 HOURS

DATE:Pick DateMay 2016

Instructions to Candidates

You should have the following for this examination

-Answer Booklet, examination pass and student ID

This paper consists of ${\bf FIVE}$ questions. Attempt question ONE (Compulsory) and any other TWO questions.

Do not write on the question paper.

Question ONE

a. Define the following terms.

i. Biological database 1 mark

ii. Accession number 1 mark

iii. Biosis 1 mark

b. Give the meaning of the following terms:

i. ASCII ½ mark

ii. PSSM ½ mark

iii. XML ½ mark

iv. UPGMA ½ mark

©Technical University of Mombasa

Page **1** of **4**

c.	Descri	be the BSML file format.	6 marks
d.	Outlin	e any FIVE limitations of bioinformatics.	5 marks
e. :	Disting	guish between Parsimony and Maximum likelihood tree building algorithms.	4 marks
f.	You ar	re given the following pairs of sequences:	
		 DDBICEKDDATU DRBICEKADATM 	
		3. CBOCADACTUMD4. CKECADAGTUUD	
	a.	Calculate similarity scores between the pair of sequences using an identity matrix mismatch=0, and match=1).	(assume 4 marks
g.	Descr	ibe the following primary protein sequence database.	6 marks
	i.	PDB	
	ii.	TrEMBL	
Questio	n TW	O	
Explain	the fo	llowing BLAST programs.	
	i.	Tblastx	10 marks
	ii.	Blastx	10 marks
Questio	on TH	REE	
a.]	Explai	n the general guidelines to consider when designing primers.	8 marks

b. Describe FOUR bioinformatic tools you would use to design primers.

8 marks

c. Use the Standard Code for Information Interchange table below to solve the following.

	30	40	50	60	70	80	90	100	110	120
0		(2	<	F	P	Z	d	n	х
1)	3	=	G	Q]	e	O	У
2		冰	4	>	H	R	1	f	p	Z
3	!	+	5	?	I	S	1	g	q	{
4	**	,	6	@	J	T	^	h	r	ĺ
5	#	-	7	A	K	U	-	i	S	}
6	\$		8	В	L	V		i	t	~
7	%	1	9	C	M	W	a	k	u	DEL
8	&	0	:	D	N	X	b	1	v	
9	,	1	;	E	O	Y	С	m	w	

BLOSUM 62

Given a character w

i. Calculate the corresponding Phred quality score based on fastq-solexa format.

4 marks

Question FOUR

a. Using an illustration, explain the position specific iterative-BLAST (PSI-BLAST) approach.

8 marks

b. Use the BLOSUM 62 and PAM250 substitution matrices below to solve the following questions

ARND COEGHILK M F P S T W Y V ARNDCOEGHILKMFPSTWY -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 R -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 D 0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2 D -2 -2 1 C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 C -2 -4 -4 -5 12 -5 -5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 Q 0 1 1 2 -5 4 2 -1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 -2 E-1 0 0 2-4 2 5-2 0-3-3 1-2-3-1 0-1-3-2-2 E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2 G 0-2 0-1-3-2-2 6-2-4-4-2-3-3-2 0-2-2-3-3 G 1-3 0 1-3-1 0 5-2-3-4-2-3-5 0 1 0-7-5-1 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 H-1 2 2 1 -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 K-1 2 0-1-3 1 1-2-1-3-2 5-1-3-1 0-1-3-2-2 K-1 3 1 0-5 1 0-2 0-2-3 5 0-5-1 0 0-3-4-2 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 1 M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2 2 F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 -5 -3 -3 P-1-2-2-1-3-1-1-2-2-3-3-1-2-4 7-1-1-4-3-2 P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1 S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 1 -2 -3 -1 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -2 -1 1 5 -2 -2 0 T 1-1 0 0-2-1 0 0-1 0-2 0-1-3 0 1 3-5-3 0 W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 0 -6 W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 -2 V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 V 0 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

Given the pairs of sequences below;

- 1. DWSDEVKA
- 2. YWSDEVKA

PAM250

- 3. DEVKDWSA
- 4. DEKVDWSS

Calculate similarity scores between these sequences using:

i. PAM250 matrix 4 marks

ii. Identity matrix (assume match = 2, and mismatch = 0) 4 marks

iii. BLOSUM 62 matrix 4 marks

Question FIVE

a. Distinguish between ENZYME and REBASA databases. 14 marks

b. Describe three bioinfomatic tools you would use to align two sequences. 6 marks