

TECHNICAL UNIVERSITY OF MOMBASA

FACULTY OF APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PURE & APPLIED SCIENCES

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (BTAC14S

&BTAC 15S2)

Type program name

ACH 4211 NUCLEAR CHEMISTRY AND RADIOCHEMISTRY Type unit code: Type

unit name.

END OF SEMESTER EXAMINATION PAPER 1

SERIES: APRIL2016

TIME:2HOURS

DATE: Pick DateSelect MonthPick Year

Instructions to Candidates

You should have the following for this examination -Answer Booklet, examination pass and student ID This paper consists of Choose No questions. AttemptChoose instruction. **Do not write on the question paper.**

Question ONE

1.

- 2. (a) Which of the following has; (I) the greatest penetrating ability (ii) the least penetration ability: a particle,
 - a β particle, or a γ ray? (2 marks)
 - (b) What type of shield is necessary to stop the following?
 - (I) X-rays
 - (ii) B Particles
 - (iii) Г Rays
 - (iv) A Particles
 - (1 mark each)
 - © Fill in the missing symbol in each of the following nuclear equations
 - (i) $^{210}_{83}Bi \rightarrow ^{4}_{2}\alpha + _$

(ii)
$${}^{15}_{8}0 \rightarrow {}^{15}_{7}N +$$

(iii)
$$\rightarrow^4_2 \alpha + \frac{222}{86} Rn$$

©Technical University of Mombasa

- (iv) ${}^{9}_{4}\text{Be} + \underline{\qquad} \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}\text{n}$ (v) ${}^{27}_{13}\text{Al} + {}^{2}_{1}\text{H} \rightarrow \underline{\qquad} + {}^{4}_{2}\alpha$ (1 mark each)
- (d) What is the effect on the mass number and atomic number of the reacting isotope when he following transmutations occur?
 - (I) A β particle is emitted
 - (ii) An α particle is emitted
 - (iii) A γ ray is emitted

(2 marks each)

(e) How does a breeder nuclear reactor produce more fuel than it uses?

(6 marks)

(f) A 5.00 mg sample of pure ²³⁸UO₂ contains 4.41 mg of 238U. If the decay rate of the uranium is 1,014 counts per minute (cpm) on an alpha detector
Of efficiency 0.315. what is the half-life of the ²³⁸U? (7 marks)

Question TWO

(a) Draw an annotated diagram of a Geiger-Muller counter. (10 marks)

- (b) Describe how the Geiger-Muller counter works and how radioactivity is Detected (5 marks)
- © How did scientists determine the half-life of 238U to be about 4.5 billion years?
- (5 marks)

Question THREE

 (a) Describe the effects on Humans of Short-Term Whole-Body exposure To the following radiation doses in rems:

<50	(1 mark)
50 -250	(2 marks)
250 -500	(2 marks)
500 – 1000	(2 marks)
1000- 10,000	(2 marks)
100,000	(1 mark)

(b) Analysis of a metal pipe showed that it contained 0.30g of 60 Co.

Another measurement made 1.4 years later showed 0.25 g of ⁶⁰Co to be remaining.

What is the half-life of ⁶⁰Co? (10 marks)

4. Question FOUR

- 5.
- Give an account of the contributions of William Conrad Roentgen, Henri Becquerel, Marie Curie, Ernest Rutherford and J.J. Thomson to Nuclear Chemistry with Special reference to: the discovery of radioactivity; discovery and characteristics of alpha, beta and gamma particles; growth and decay of radioactive nuclei; and the structure of the atom. (20 marks)

Question FIVE

- 7.
- 8. Write succinct notes on:
 - (a) Describe the determination of arsenic in a plant sample by Neutron Activation Analysis (12 marks)
 - (b) Tabulate the differences between Chemical reactions and Nuclear reactions (8 marks)