

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

University Examination 2010

THIRD YEAR/FIRST SEMESTER EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2304: HYDRAULICS I

SERIES: APRIL/MAY 2010

TIME: 2 HOURS

Instructions:

Answer Question **One** and any other **TWO** questions.

QUESTION ONE

(a)	Show that for a circular culvert of diameter D the Velocity of flow will be a maximum when the depth of flow h at the centre is 0.81 D . Use the Chezy formular. (20 marks)				
(b)	A Sewer, diameter D = 0.6m, has a slope of 1 in 200.				
	(i)	Calculate the maximum velocity of flow that can occur.	(8 marks)		
	(ii)	Calculate the discharge at this velocity: Take C = 55 SI units.	(2 marks)		
QUESTION TWO					
A rectangular canal of cross-section conveys $11.3m^3/s$ of water with a velocity of $1.8m/s$. Calculate the gradient required.					
(a)	If the	e proportions are those of maximum discharge.	(10 marks)		
(b)	If the	e width is three times the depth, C = 66 is SI units.	(10 marks)		

QUESTION THREE

A concrete Grid trapezoidal channel with uniform flow has a normal depth of 2m. The base width is 5m and the side slopes are equal at 1:2. Manning's n can be taken as 0.015 and the bed slope S₀=0.001.

Calculate:

(a)	Discharged	(10 marks)	
(b)	Mean velocity	(5 marks)	
(c)	Reynolds number (Re).	(5 marks)	
QUESTION FOUR			

- (a) Develop an expression for the quantity of liquid flowing over a sharpedged V-notch of total angle 2θ in terms of the head H above the bottom of the notch the angle θ , and the coefficient of discharge Cd, assuming the velocity of approach to be small. (14 marks)
- (b) If the rate of flow of water over a V-notch having $\theta = 35^{\circ}$ is 42.5 dm3/s, Calculate the head in centimeters. Take Cd as 0.62. (6 marks)

QUESTION FIVE

- (a) A 15m vertical well carries a design flow head of 1.5m. Calculate the flow depth at the toe. (10 marks)
- (b) A discharge of $4.5m^3/s$ occurs in a rectangular channel 1.83m wide with S=0.002 and n=0.012. Calculate the normal depth for uniform flow and calculate the critical depth. Is the flow subcritical or supercritical? (10 marks)