THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
University Examination 2010

THIRD YEAR/FIRST SEMESTER EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2304: HYDRAULICS I

SERIES: APRIL/MAY 2010
TIME: 2 HOURS

Instructions:

Answer Question One and any other TWO questions.

QUESTION ONE

(a) Show that for a circular culvert of diameter D the Velocity of flow will be a maximum when the depth of flow h at the centre is $0.81 D$. Use the Chezy formular.
(b) A Sewer, diameter $\mathrm{D}=0.6 \mathrm{~m}$, has a slope of 1 in 200 .
(i) Calculate the maximum velocity of flow that can occur. (8 marks)
(ii) Calculate the discharge at this velocity:

Take C = 55 SI units.

QUESTION TWO

A rectangular canal of cross-section conveys $11.3 \mathrm{~m}^{3} / \mathrm{s}$ of water with a velocity of $1.8 \mathrm{~m} / \mathrm{s}$. Calculate the gradient required.
(a) If the proportions are those of maximum discharge.
(10 marks)
(b) If the width is three times the depth, $\mathrm{C}=66$ is SI units.

QUESTION THREE

A concrete Grid trapezoidal channel with uniform flow has a normal depth of 2 m . The base width is 5 m and the side slopes are equal at $1: 2$.
Manning's n can be taken as 0.015 and the bed slope $\mathrm{S}_{0}=0.001$.

Calculate:

(a) Discharged
(10 marks)
(b) Mean velocity
(5 marks)
(c) Reynolds number (Re).
(5 marks)

QUESTION FOUR

(a) Develop an expression for the quantity of liquid flowing over a sharpedged V-notch of total angle 2θ in terms of the head H above the bottom of the notch the angle θ, and the coefficient of discharge Cd , assuming the velocity of approach to be small.
(14 marks)
(b) If the rate of flow of water over a V-notch having $\theta=35^{\circ}$ is $42.5 \mathrm{dm} 3 / \mathrm{s}$, Calculate the head in centimeters. Take Cd as 0.62.
(6 marks)

QUESTION FIVE

(a) A 15 m vertical well carries a design flow head of 1.5 m . Calculate the flow depth at the toe.
(b) A discharge of $4.5 \mathrm{~m}^{3} / \mathrm{s}$ occurs in a rectangular channel 1.83 m wide with $\mathrm{S}=0.002$ and $\mathrm{n}=0.012$. Calculate the normal depth for uniform flow and calculate the critical depth. Is the flow subcritical or supercritical?

